85 research outputs found

    L’enregistrement du blues : cristallisations d’un genre

    Get PDF
    Dans cet article, l’esthĂ©tique du blues est explorĂ©e du point de vue historique. Les interprĂ©tations du blues offertes par les premiers collecteurs Ă©taient souvent ethnocentriques. Les Ă©crits de Gates Thomas, Charles Peabody, Howard W. Odum, Will H. Thomas et John A. Lomax Ă©taient marquĂ©s par des prĂ©jugĂ©s et manquaient souvent de prĂ©cision en ce qui concerne la vie et la musique des AmĂ©ricains noirs du Sud des États-Unis. Les enregistrements commerciaux des annĂ©es 1920, tout en contribuant Ă  rendre le blues populaire, ont imposĂ© certaines limites stylistiques aux interprĂštes. En dĂ©pit d’une standardisation relative de la forme du blues, les enregistrements offraient nĂ©anmoins de nouvelles possibilitĂ©s aux chanteurs eux-mĂȘmes. Les innovations Ă©taient assimilĂ©es et diffusĂ©es rapidement, non seulement grĂące Ă  la vente de disques mais encore par les Ă©missions de radio. L’esthĂ©tique du blues Ă©chappe Ă  maints Ă©gards Ă  la gĂ©nĂ©ralisation. Étant donnĂ© l’étendue du Sud des États-Unis et la diversitĂ© des origines des Afro-AmĂ©ricains, des variantes rĂ©gionales du blues se sont dĂ©veloppĂ©es. L’esthĂ©tique du genre a Ă©tĂ© et continue d’ĂȘtre façonnĂ©e, non seulement par l’emprise de l’industrie du disque et d’une commercialisation Ă  grande Ă©chelle, mais encore par les migrations des Noirs et leur proximitĂ© par rapport Ă  d’autres groupes ethniques ou culturelles et leurs traditions musicales.In this article the aesthetics of blues is explored through a discussion of its historical development. Early interpretations of blues by collectors were often ethnocentric. The writings of Gates Thomas, Charles Peabody, Howard W. Odum, Will H. Thomas and John A. Lomax were biased and often inaccurate in the depiction of African-American life and music in the southern United States. The commercial « race » recordings of the 1920s popularised the blues form and imposed stylistic limitations upon the performers. Despite relative standardisation of the blues form, however, recording offered new opportunities for the performers themselves. Innovations were quickly assimilated and disseminated, not only through record sales, but through radio broadcast. In many ways, the aesthetics of blues defies generalisation. Given the vastness of the southern United States and the differences in ancestry of African Americans, the blues developed distinctive regional variations. The aesthetics was and is shaped not only by the impact of the recording industry and mass market commercialisation, but by the migratory patterns of blacks and their proximity to other ethnic and cultural groups and their musical traditions

    Rebuilding a Vent Community: Lessons from the EPR Integrated Study Site

    Get PDF
    The discovery of a seafloor eruption at the East Pacific Rise (EPR ) in 1991 presented an opportunity to examine the colonization and assembly of macrofaunal communities at newly formed diffuse-flow vents as well as to document the changes in community composition (Shank et al., 1998) in the context of temperature variation (Scheirer et al., 2006) and fluid chemistry (Von Damm and Lilley, 2004). The eruption site became a focus of the Ridge 2000 EPR Integrated Study Site (ISS) established to facilitate studies of the interaction of biological, geochemical, and/or physical processes associated with seafloor spreading. A second seafloor eruption in 2005–2006 provided opportunities to not only observe changes in community composition and environmental conditions, but also to deploy colonization substrata and other specialized equipment from “time zero.” Here we focus on how larval dispersal and recruitment contribute to the establishment of hydrothermal vent communities

    Larval Dispersal: Vent Life in the Water Column

    Get PDF
    Visually striking faunal communities of high abundance and biomass cluster around hydrothermal vents, but these animals don’t spend all of their lives on the seafloor. Instead, they spend a portion of their lives as tiny larvae in the overlying water column. Dispersal of larvae among vent sites is critical for population maintenance, colonization of new vents, and recolonization of disturbed vents. Historically, studying larvae has been challenging, especially in the deep sea. Advances in the last decade in larval culturing technologies and more integrated, interdisciplinary time-series observations are providing new insights into how hydrothermal vent animals use the water column to maintain their populations across ephemeral and disjunct habitats. Larval physiology and development are often constrained by evolutionary history, resulting in larvae using a diverse set of dispersal strategies to interact with the surrounding currents at different depths. These complex biological and oceanographic interactions translate the reproductive output of adults in vent communities into a dynamic supply of settling larvae from sources near and far

    Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gollner, S., Govenar, B., Arbizu, P. M., Mullineaux, L. S., Mills, S., Le Bris, N., Weinbauer, M., Shank, T. M., & Bright, M. Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption. Frontiers in Marine Science, 6, (2020): 832, doi:10.3389/fmars.2019.00832.In 2005/2006, a major volcanic eruption buried faunal communities over a large area of the 9°N East Pacific Rise (EPR) vent field. In late 2006, we initiated colonization studies at several types of post eruption vent communities including those that either survived the eruption, re-established after the eruption, or arisen at new sites. Some of these vents were active whereas others appeared senescent. Although the spatial scale of non-paved (surviving) vent communities was small (several m2 compared to several km2 of total paved area), the remnant individuals at surviving active and senescent vent sites may be important for recolonization. A total of 46 meio- and macrofauna species were encountered at non-paved areas with 33 of those species detected were also present at new sites in 2006. The animals living at non-paved areas represent refuge populations that could act as source populations for new vent sites directly after disturbance. Remnants may be especially important for the meiofauna, where many taxa have limited or no larval dispersal. Meiofauna may reach new vent sites predominantly via migration from local refuge areas, where a reproductive and abundant meiofauna is thriving. These findings are important to consider in any potential future deep-sea mining scenario at deep-sea hydrothermal vents. Within our 4-year study period, we regularly observed vent habitats with tubeworm assemblages that became senescent and died, as vent fluid emissions locally stopped at patches within active vent sites. Senescent vents harbored a species rich mix of typical vent species as well as rare yet undescribed species. The senescent vents contributed significantly to diversity at the 9°N EPR with 55 macrofaunal species (11 singletons) and 74 meiofaunal species (19 singletons). Of these 129 species associated with senescent vents, 60 have not been reported from active vents. Tubeworms and other vent megafauna not only act as foundation species when alive but provide habitat also when dead, sustaining abundant and diverse small sized fauna.We received funding from the Austrian FWF (GrantP20190-B17; MB), the U.S. National Science Foundation (OCE-0424953; to LM, D. McGillicuddy, A. Thurnherr, J. Ledwell, and W. Lavelle; and OCE-1356738 to LM), and the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, Grant Agreement No. 603418. Ifremer and CNRS (France) supported NL cruise participation and sensor developments. BG was supported by a postdoctoral fellowship from the Deep Ocean Exploration Institute at WHOI (United States). TS was supported by the U.S. National Science Foundation (OCE-0327261 to TS and OCE-0937395 to TS and BG)

    Hypotaurine and thiotaurine as indicators of sulfide exposure in bivalves and vestimentiferans from hydrothermal vents and cold seeps

    Get PDF
    Author Posting. © Blackwell, 2007. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Marine Ecology 28 (2007): 208-218, doi:10.1111/j.1439-0485.2006.00113.x.Vesicomyid clams, vestimentiferans, and some bathymodiolin mussels from hydrothermal vents and cold seeps possess thiotrophic endosymbionts, high levels of hypotaurine and, in tissues with symbionts, thiotaurine. The latter, a product of hypotaurine and sulfide, may store and/or transport sulfide non-toxically, and the ratio to hypotaurine plus thiotaurine (Th/[H+Th]) may reflect an animal's sulfide exposure. To test this, we analyzed seep and vent animals with in situ sulfide measurements. Calyptogena kilmeri clams occur at high-sulfide seeps in Monterey Canyon, while C. (Vesicomya) pacifica clams occur at seeps with lower levels but take up and metabolize sulfide more effectively. From one seep where they co-occur, both had gill thiotaurine contents at 22-25 mmol/kg wet mass, and while C. (V.) pacifica had a higher blood sulfide level, it had a lower Th/[H+Th] (0.39) than C. kilmeri (0.63). However, these same species from different seeps with lower sulfide exposures had lower ratios. Bathymodiolus thermophilus (East Pacific Rise [EPR 9°50'N]) from high- (84 ÎŒM) and a low- (7 ÎŒM) sulfide vents had gill ratios of 0.40 and 0.12, respectively. Trophosomes of Riftia pachyptila (EPR 9°50'N) from medium- (33 ÎŒM) and low- (4 ÎŒM) sulfide vents had ratios of 0.23 and 0.20, respectively (not significantly different). Ridgeia piscesae vestimentiferans (Juan de Fuca Ridge) have very different phenotypes at high- and low-sulfide sites, and their trophosomes had the greatest differences: 0.81 and 0.04 ratios from high- and low-sulfide sites, respectively. Thus Th/[H+Th] may indicate sulfide exposure levels within species, but not in interspecies comparisons, possibly due to phylogenetic and metabolic differences. Total H+Th was constant within each species (except in R. piscesae); the sum may indicate the maximum potential sulfide load that a species faces.Funding for Ridgeia piscesae collection was grant UAF01-0042 from NOAA-West Coast National Undersea Research Center to Stephen W. Schaeffer, Charles R. Fisher, and StĂ©phane Hourdez. Funding for GLB, RVH and PHY was the W.M. Keck Foundation (grant to Whitman College Life Sciences program) and Whitman College Perry Grant program. Funding was from Ifremer for NLB, and The David and Lucile Packard Foundation for SKG

    Detecting the influence of initial pioneers on succession at deep-sea vents

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50015, doi:10.1371/journal.pone.0050015.Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50â€ČN on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents.The authors received funding from National Science Foundation grant OCE-0424953, WHOI Deep Ocean Exploration Institute, WHOI Summer Student Fellow program, Woods Hole Partnership in Education Program, IFREMER and CNRS, Fondation TOTAL Chair Extreme Marine Environment, Biodiversity and Global change

    Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea?

    Get PDF
    BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1) compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2) explore factors that affect these life history processes, when information is available; and (3) explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2) d(-1) across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood falls. Vents also have the most uneven taxonomic structure, with fewer recruits represented by higher taxonomic levels (phyla, orders, classes) compared to seeps and wood and kelp falls, whereas the opposite is true at whale falls. CONCLUSIONS/SIGNIFICANCE: Based on our evaluation of the literature, the patterns and regulatory factors of the early history processes in chemosynthetic environments in the deep sea remain poorly understood. More research focused on these early life history stages will allow us to make inferences about the ecological and biogeographic linkages among the reducing habitats in the deep sea

    Potential mitigation and restoration actions in ecosystems impacted by seabed mining

    Get PDF
    Mining impacts will affect local populations to different degrees. Impacts range from removal of habitats and possible energy sources to pollution and smaller-scale alterations in local habitats that, depending on the degree of disturbance, can lead to extinction of local communities. While there is a shortage or even lack of studies investigating impacts that resemble those caused by actual mining activity, the information available on the potential long-lasting impacts of seabed mining emphasise the need for effective environmental management plans. These plans should include efforts to mitigate deep-sea mining impact such as avoidance, minimisation and potentially restoration actions, to maintain or encourage reinstatement of a resilient ecosystem. A wide range of mitigation and restoration actions for deep-sea ecosystems at risk were addressed. From an ecological point of view, the designation of set-aside areas (refuges) is of utmost importance as it appears to be the most comprehensive and precautionary approach, both for well-known and lesser studied areas. Other actions range from the deployment of artificial substrates to enhance faunal colonisation and survival to habitat recreation, artificial eutrophication, but also spatial and temporal management of mining operations, as well as optimising mining machine construction to minimise plume size on the sea floor, toxicity of the return plume and sediment compression. No single action will suffice to allow an ecosystem to recover, instead combined mitigation/restoration actions need to be considered, which will depend on the specific characteristics of the different mining habitats and the resources hosted (polymetallic sulphides, polymetallic nodules and cobalt-rich ferromanganese crusts). However, there is a lack of practical experience regarding mitigation and restoration actions following mining impacts, which severely hamper their predictability and estimation of their possible effect and success. We propose an extensive list of actions that could be considered as recommendations for best environmental practice. The list is not restricted and, depending on the characteristics of the site, additional actions can be considered. For all actions presented here, further research is necessary to fully encompass their potential and contribution to possible mitigation or restoration of the ecosystem.CT SFRH/BPD/110278/2015 IF/00029/2014/CP1230/CT0002 UID/MAR/00350/2013 EU Horizon 2020 project Marine Ecosystem Restoration in Changing European Seas (MERCES) 689518 PO ACORES 2020 project Acores-01-0145-Feder-000054_RECOinfo:eu-repo/semantics/publishedVersio

    Expanding dispersal studies at hydrothermal vents through species identification of cryptic larval forms

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 157 (2010): 1049-1062, doi:10.1007/s00227-009-1386-8.The rapid identification of hydrothermal vent-endemic larvae to the species level is a key limitation to understanding the dynamic processes that control the abundance and distribution of fauna in such a patchy and ephemeral environment. Many larval forms collected near vents, even those in groups such as gastropods that often form a morphologically distinct larval shell, have not been identified to species. We present a staged approach that combines morphological and molecular identification to optimize the capability, efficiency, and economy of identifying vent gastropod larvae from the northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and 26 of the 27 gastropod species known to occur specifically in the 9° 50’ N region, can be identified to species. Morphological identification efforts are improved by new protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the majority of lepetodrilids and peltospirids require molecular identification. Restriction fragment length polymorphism digests are presented as an economical method for identification of five species of Lepetodrilus and six species of peltospirids. The remaining unidentifiable specimens can be assigned to species by comparison to an expanded database of 18S ribosomal DNA. The broad utility of the staged approach was exemplified by the revelation of species-level variation in daily planktonic samples and the identification and characterization of egg capsules belonging to a conid gastropod Gymnobela sp. A. The improved molecular and morphological capabilities nearly double the number of species amenable to field studies of dispersal and population connectivity.Funding was provided by as Woods Hole Oceanographic Institution Deep Ocean Exploration Institute grant to L.M and S. Beaulieu, National Science Foundation grants OCE-0424953, OCE-9712233, and OCE-9619605 to L.M, OCE-0327261 to T.S., and OCE-0002458 to K. Von Damm, and a National Defense Science and Engineering Graduate fellowship to D.A

    Diversity of Meiofauna from the 9°50â€ČN East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions

    Get PDF
    Background: We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9 degrees 50'N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes. Methodology/Principal Findings: After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4-7, H-loge': 0.11-0.45), vigorous flow tubeworm (S: 8-23; H-loge': 0.44-2.00) to low flow mussel habitats (S: 28-31; H-loge': 2.34-2.60). Conclusions/Significance: Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents
    • 

    corecore