1	Expanding dispersal studies at hydrothermal vents through species identification of
2	cryptic larval forms
3	
4	D. K. Adams*
5	S. W. Mills
6	T. M. Shank
7	L. S. Mullineaux
8	
9	Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
10	USA
11	
12	* Corresponding author; current address: National Institutes of Health, NIDCR, Bethesda
13	MD 20982 USA; email: <u>dadams@whoi.edu</u> ; Tel: (301) 496-1392; Fax: (301) 480-5353
14	
15	Abstract
16	The rapid identification of hydrothermal vent-endemic larvae to the species level is a key
17	limitation to understanding the dynamic processes that control the abundance and
18	distribution of fauna in such a patchy and ephemeral environment. Many larval forms
19	collected near vents, even those in groups such as gastropods that often form a
20	morphologically distinct larval shell, have not been identified to species. We present a
21	staged approach that combines morphological and molecular identification to optimize
22	the capability, efficiency, and economy of identifying vent gastropod larvae from the
23	northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be

1	identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and
2	26 of the 27 gastropod species known to occur specifically in the 9° 50' N region, can be
3	identified to species. Morphological identification efforts are improved by new
4	protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta
5	subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the
6	majority of lepetodrilids and peltospirids require molecular identification. Restriction
7	fragment length polymorphism digests are presented as an economical method for
8	identification of five species of Lepetodrilus and six species of peltospirids. The
9	remaining unidentifiable specimens can be assigned to species by comparison to an
10	expanded database of 18S ribosomal DNA. The broad utility of the staged approach was
11	exemplified by the revelation of species-level variation in daily planktonic samples and
12	the identification and characterization of egg capsules belonging to a conid gastropod
13	Gymnobela sp. A. The improved molecular and morphological capabilities nearly double
14	the number of species amenable to field studies of dispersal and population connectivity.
15	
16	Keywords
17	Hydrothermal vent, larvae, protoconch, gastropod, Lepetodrilus, Peltospira, RFLP,
18	barcode, egg capsules
19	
20	Introduction
21	Larval dispersal in patchy and disturbed ecosystems such as hydrothermal vents is
22	essential for population maintenance and colonization of nascent or disturbed habitat.
23	Gastropods are emerging as a model group on which to focus studies about dispersal,

1	colonization, and population dynamics at vents (e.g. Mullineaux et al. 2003; Mullineaux
2	et al. 2005; Adams and Mullineaux 2008; Matabos et al. 2008a). Gastropod abundances
3	and ecological influence across the range of vent habitats make them key players in
4	structuring macrofaunal communities (e.g. Micheli et al. 2002; Mullineaux et al. 2003;
5	Govenar et al. 2004; Mills et al. 2007). High abundances of gastropod larvae in the
6	plankton (Metaxas 2004; Mullineaux et al. 2005), multiple modes of development (Lutz
7	et al. 1984; Lutz et al. 1986), and relative ease of larval identification (Mullineaux et al.
8	1996) allow researchers to address questions such as: how do larval development and
9	behavior, and hydrodynamics combine to disperse and/or retain individuals (Lutz et al.
10	1980; Marsh et al. 2001; Adams and Mullineaux 2008); and what is the impact of
11	dispersal and recruitment on community structure and dynamics?
12	Difficulty in identifying larval stages to the species level can limit studies of
13	larval dispersal (Metaxas 2004; Mullineaux et al. 2005). Larval identifications have
14	traditionally relied on the culturing of larvae and metamorphosis of collected larvae to an
15	identifiable juvenile stage. To date, very few larval stages of vent-endemic species have
16	been cultured, e.g. Alvinella pompejana (Pradillon et al. 2004; Pradillon et al. 2005),
17	Riftia pachyptila (Marsh et al. 2001), and Bythograea thermydron (Epifanio et al. 1999);
18	no vent organisms have been successfully cultured through the entire lifecycle. Thus,
19	identifications of vent larvae have instead relied on similarities between larval and adult
20	morphology, larval structures preserved in adult morphology (Gustafson et al. 1991;
21	Mullineaux et al. 1996) and, more recently, molecular identification (Epifanio et al. 1999;
22	Comtet et al. 2000; Pradillon et al. 2007).

1	Although, gastropod larvae are more readily identifiable than most other taxa due
2	to the preservation of morphologically distinct protoconchs (larval shells) on adults and
3	juveniles, less than half of the gastropod species (17 of 41 species) inhabiting the
4	northern East Pacific Rise (NEPR), from 21° N to 9° N and the Galápagos Rift, can be
5	unequivocally identified to species using the morphological characteristics of the
6	protoconch (e.g. Mullineaux et al. 1996; Warén and Bouchet 2001). Most embryos and
7	trochophores do not have morphological characteristics that allow for species-level
8	identification. Species-level identification of protoconchs has been hampered by poor
9	preservation of larval shells (especially for Caenogastropoda), lack of descriptions of
10	sister species, and strong similarities within genera and families. Regardless,
11	comparisons of preserved protoconch morphology in adult and juvenile gastropods to
12	field-collected larvae has enabled the morphological identification of selected larval vent
13	gastropods to species (Mullineaux et al. 1996). All species of the Sutilizonidae and
14	Neomphalidae known to occur on the NEPR can be identified to the species level
15	morphologically (Turner et al. 1985; McLean 1989a; Mullineaux et al. 1996; Warén and
16	Bouchet 2001). In contrast, representatives of the most abundant taxa, the Lepetodrilidae
17	(7 out of 8 species) and Peltospiridae (8 out of 12 species), and all of the
18	Caenogastropoda (4 species) cannot be distinguished morphologically to species. The
19	caenogastropods, seven peltospirids, and six other species lack any information on
20	protoconch morphology.
21	A main goal of the present study is to improve the capability, efficiency, and
22	economy of identifying vent gastropod larvae. Since we cannot identify all species with

23 morphology alone, we employ a staged approach that involves visual examination of

1 larval shell morphology, followed when necessary, by molecular genetic analysis (Fig 1). 2 Gastropod specimens can be divided into three categories based on morphology alone: 3 (1) those with larval shell morphology that is distinct at the species level, (2) those with 4 larval shell morphology distinct only at the family or genus level, and (3) those with 5 uninformative larval shell morphology (hereafter referred to as 'unknowns'). From this 6 morphological categorization, the appropriate molecular techniques are selected for each 7 grouping to obtain species-level identification. This approach takes advantage of easily 8 obtained morphological information and optimizes the efficiency of molecular genetic 9 identifications.

10 We have three objectives to increase the capability, efficiency, and economy of 11 the staged approach. The first is to expand the number of species that can be identified 12 solely by larval shell morphology. The second is to develop a fast and inexpensive 13 molecular genetic method that is useful for identifying species whose larval shell 14 morphology is informative, but not distinct at the species level. The third is to expand a 15 sequence database of morphologically identified gastropod species ('barcode') that can 16 be compared to sequences of unknowns - embryos, trochophore larvae, and shelled larvae 17 whose morphologies do not allow for classification. To demonstrate the effectiveness of 18 this three-step approach, it is used to identify field-collected larval and benthic samples.

- 19
- 20 Materials & Methods
- 21 Sample Collection

Adult, juvenile and larval gastropods were collected by submersible (*DSV Alvin*)
 or autonomous underwater pump. Adult and juvenile gastropods used in morphological

1	studies were collected on basalt blocks (10 cm each side) or from washings of mussel,
2	tubeworm and sulfide collections during multiple cruises to the EPR, 9° 50' N area
3	between 1995 and 2004 (Table S1). Larvae were collected in the same region, near
4	active vent sites, via Mclane WTS-LV plankton pumps between 1998 and 2000 (Table
5	S1). All specimens used for morphology were preserved in 80% ethanol. For molecular
6	investigation, adult gastropods were collected from washings of mussel, tubeworm and
7	sulfide collections from the EPR, $9^{\circ} 30' - 9^{\circ} 51'$ N and 21° N between 2000 and 2006
8	(Table S1). Adult specimens were sorted and morphologically identified to species
9	onboard the RV Atlantis before freezing at -70° C.
10	
11	Morphological Identification
12	To expand the suite of species that can be identified by larval shell morphology,
13	we compiled morphological descriptions from the published literature to identify gaps in
14	our knowledge; and we imaged protoconchs retained on juveniles from species lacking
15	larval descriptions. If juveniles can be accurately identified to species, and the retained

larval descriptions. If juveniles can be accurately identified to species, and the retained
protoconchs on those juveniles are morphologically distinct at the species level and have
little to no within-species variation, then new species-specific morphological descriptions
can be generated (Mullineaux et al. 1996). Standard diagnostic features used for
morphological characterization and identification of the protoconchs included shell size
(maximum diameter), sculpture and shape, and aperture flare and shape (e.g. sinuous or
straight margin). We focused on obtaining descriptions for the genus *Lepetodrilus* and
for the family Peltospiridae, whose species are abundant and ecologically important (e.g.

23 Mullineaux et al. 2003; Van Dover 2003; Govenar et al. 2004; Mills et al. 2007).

1	Individuals with smaller than average shell length and sufficient adult morphology for
2	species-level identification (herein referred to as juveniles) were screened under a
3	dissecting scope for the preservation of an attached protoconch. Juveniles of
4	Clypeosectus delectus, Echinopelta fistulosa, Gorgoleptis spiralis, Lepetodrilus cristatus,
5	L. elevatus, L. ovalis, L. pustulosus, Nodopelta rigneae, N. subnoda, and Peltospira
6	operculata were found with attached protoconchs and subsequently imaged using
7	scanning electron microscopy (SEM). Select and common larval morphotypes from
8	pump collections were also imaged using SEM. Micrographs of these unknown larval
9	morphotypes were compared to SEM images of protoconchs retained on juveniles that
10	yielded taxonomically informative descriptions. These larval micrographs sometimes
11	revealed or clarified protoconch characteristics that were not apparent on the juveniles
12	due to juvenile growth or partially corroded protoconch sculpture.
13	For SEM, juvenile gastropods with attached larval protoconchs and larvae were
14	cleaned in a diluted 3:1 (Clorox) bleach solution at 50° C for five minutes, air dried, and
15	then mounted on circular glass slides using a small amount of white glue. Slides were
16	glued to SEM stubs with silver polish, then silver-coated in a SAMSPUTTER 2a
17	automatic sputter-coating machine and imaged on a JEOL JSM-840 Scanning Electron
18	Microscope. For each species, juveniles were imaged until an informative SEM image
19	was obtained or all available specimens of that species with an intact protoconch were
20	used. In all, 16 juveniles and 45 larvae were imaged with SEM.
21	

22 Identification of a Defined Group of Species - RFLP Design

1	Restriction fragment length polymorphism assays (RFLPs) were developed as a
2	cost effective molecular method for identifying Lepetodrilus spp. and peltospirids, which
3	represent twelve of the morphologically unidentifiable species (taking into consideration
4	the new morphological descriptions described herein). RFLPs use restriction enzymes to
5	cut PCR products into unique banding patterns based on species-specific differences in
6	nucleotide sequence. This method can be cost efficient for identification of a finite
7	number of candidate species for which species-specific banding patterns could be
8	characterized. Since many of the reagents are one time purchases rather than per sample,
9	cost efficiency increases with increased sample number. Thus, Lepetodrilus spp. and
10	peltospirids are well suited for this assay, rather than sequencing, due to high abundance
11	in the benthos (Van Dover 2003; Dreyer et al. 2005) and as larvae in the plankton
12	(Mullineaux et al. 2005), and the ability for morphological assignment to a defined
13	species group (genus or family, respectively).
14	We developed RFLP assays for the genus Lepetodrilus and unidentifiable species
15	of the family Peltospiridae (Echinopelta fistulosa, Hirtopelta hirta, Nodopelta heminoda,
16	N. rigneae, N. subnoda, P. delicata, and P. operculata) using part of the mitochondrial
17	16S rDNA gene. The mitochondrial 16S rDNA gene has established use for species-level
18	lineage determination in gastropod phylogenetics (e.g. Reid et al. 1996; Douris et al.
19	1998). While mitochondrial genes can be subject to hybridization and introgression, the
20	use of mitochondrial markers for species identification has been broadly accepted by the
21	community, as evidenced by large sequencing initiatives such as the Barcode of Life
22	(Savolainen et al. 2005). Additionally, we saw no evidence for either hybridization or
23	introgression in this study. Nuclear 18S rDNA was also attempted, but abandoned due to

1	insufficient nucleotide variability at potential restriction sites among sister species (see
2	Results). Part of the 16S gene was amplified and sequenced for at least two adult
3	individuals each of Lepetodrilus cristatus, L. elevatus, L. ovalis, L. pustulosus, L.
4	tevnianus, P. operculata, P. delicata, E. fistulosa and N. subnoda (see Table S2). Only
5	one individual of each N. rigneae and N. heminoda were sequenced due to availability.
6	No H. hirta specimens were available, but the partial 16S sequence from GenBank
7	(AY163397) was included in the alignment and RFLP design. Echinopelta fistulosa was
8	included in the RFLP because it was not morphologically identifiable at the time of initial
9	RFLP development. Peltospira lamellifera was the only morphologically unidentifiable
10	species in the NEPR region from these two groups not included, due to availability. The
11	absence of this species in this study is not likely to compromise identifications since only
12	three specimens of <i>P. lamellifera</i> (all from the 13° N area) have ever been recorded.
13	All PCR reactions were performed in an Eppendorf Master Gradient thermocycler
14	in 25 μl reaction containing 0.75 - 1.00 μl genomic DNA extracted using a DNAeasy Kit
15	(Qiagen), 1x buffer (Promega), 1mM MgCl ₂ , 1 mM each dNTP, 500 nM each primer,
16	and 1 unit of Taq DNA polymerase (Promega). Lepetodrilus spp. were amplified and
17	sequenced using the "universal" primers, 16sar-L (forward) and 16sbr-H (reverse)
18	(Palumbi 1996). The peltospirids were amplified and sequenced using the 16sar-L
19	forward primer and a new reverse primer, Pelto16sR: 5'
20	GCTTCTRCACCMACTGGAAATC. Failure to amplify Nodopelta rigneae using 16sar-
21	L and 16sbr-H necessitated the design of the new primer for the peltospirids using
22	Primer3 (<u>http://frodo.wi.mit.edu/primer3/</u>). Amplifications were performed using the
23	following cycling parameters: 2 minutes initial denaturation at 96° C followed by 30

1	cycles of 30 s at 94° C, 30 s at 48° C, and 1 min at 72° C. PCR products were visualized
2	on a 1.5% agarose gel with ethidium bromide using the ChemImager or AlphaImager
3	system (Alpha Innotech Corporation). PCR products were purified using the QiaQuick
4	PCR Purification Kit (Qiagen) before sequencing on an ABI 377 or 3730xl sequencer
5	(Applied Biosystems). Sequences were edited in EditView (Applied Biosystems) and
6	aligned using Sequencher v. 4.2.2 (Gene Codes Corp.) and MacClade (Maddison and
7	Maddison 2000). Restriction enzymes were chosen by viewing cut sites using
8	Sequencher v. 4.2.2.
9	All restriction enzyme digestions were performed in 15 μ l reactions containing
10	500-1000 ng of DNA, 5 units of each restriction enzyme, 1x buffer (enzyme specific,
11	provided by Promega or New England Biolabs), and 100 μ M BSA. Digestions were
12	visualized on a 2% agarose gel containing ethidium bromide using the ChemImager or
13	AlphaImager system (Alpha Innotech Corporation).
14	Fifteen individuals of each species, except Hirtopelta hirta, Nodopelta rigneae
15	and <i>N. heminoda</i> , from at least two ridge segments (e.g. 9° 50' N and 21° N) were
16	digested as described above to test for false negatives and false positives. Initial
17	morphological screening into the two taxonomic groups, the genus Lepetodrilus and
18	unknown peltospirids, eliminated false positive identification of species not included in
19	the RFLP design.
20	
21	Identification with No Morphological Information
22	In order to expand the database for comparison with sequences from unidentified
23	larvae, partial nuclear 18S rDNA sequences were obtained from all available adult

1	gastropods species from the NEPR (20 out of 41, Table S2). The nuclear 18S rDNA gene
2	was chosen to take advantage of existing sequences in GenBank and because of the
3	established use of the 18S region in gastropod phylogeny (Harasewych and McArthur
4	2000). If necessary, adult identifications were compared to the reference collection at the
5	Los Angeles County Natural History Museum or identified by Anders Warén (Swedish
6	Museum of Natural History). Genomic DNA was purified using the DNAeasy Kit
7	(Qiagen). Part of the 18S rDNA gene was amplified and sequenced using polymerase
8	chain reaction with the primers AGM-18F (forward): 5'
9	GCCAGTAGTCATATGCTTGTCTC and AGM-18R (reverse): 5'
10	AGACTTGCCCTCCAATRGATCC (Harasewych and McArthur 2000) using the
11	procedure and PCR conditions described above. Sequences were aligned for comparison
12	using Sequencher v. 4.2.2 (Gene Codes Corp.) and MacClade (Maddison and Maddison
13	2000). Parsimony trees and neighbor-joining trees were made in PAUP 4.0 (Swofford
14	2003). To determine the confidence level of the monophyletic groups, bootstrap analyses
15	were performed using five hundred replicates.
16	
17	Application to Larval Samples

The staged procedure developed in this study was applied to identify larvae from a sub-set of time-series sediment trap collections near 9° 50' N EPR. Larvae were collected daily in a 21 sample Mclane PARFLUX time-series sediment trap moored 4 meters above bottom at a location 10 m south of the Choo Choo vent site (9° 49.60' N, 104° 17.37' W, 2512 m) during the November 2004 AT11-20 cruise. The trap opening was 0.5 m² and is covered by baffle with a cell diameter of 2.5 cm. Samples were

1	preserved in a saturated salt - 20% DMSO solution (Khripounoff et al. 2000) to preserve
2	morphology and DNA. Larvae from four of the samples were sorted using a Zeiss Stemi
3	2000-C dissecting scope and then identified morphologically to species using a Zeiss
4	Axiostar Plus compound scope.
5	Those larvae not identifiable to species were sorted into three groups for
6	molecular identification: Lepetodrilus spp., peltospirids and unknowns. Lepetodrilus spp.
7	were identified based on small size, 170-190 μ m, punctate sculpture, and a straight
8	aperture margin that was even with the axis of coiling. Unfortunately, L. pustulosus has
9	not been successfully imaged and juveniles are difficult to identify (Warén and Bouchet
10	2001); thus the morphology assessment was based on the consistency of size, shape and
11	sculpture characteristics within Lepetodrilus species on the EPR, Galápagos, Juan de
12	Fuca, and Mid Atlantic Ridges and within the family in general (Mullineaux et al. 1996;
13	Warén and Bouchet 2001). Peltospirids were identified based on ridged ornamentation
14	and shape. Genomic DNA was extracted from each sorted larva not identified to species,
15	using the QiaAmp DNA Micro Kit (Qiagen), a Chelex extraction (Walsh et al. 1991), or
16	by dropping larvae directly into the PCR solution. Successful extractions were then
17	sequenced or processed for RFLP as described above.
18	The identification procedure was also applied to unidentified egg capsules to
19	demonstrate the utility of the technique on other early-stage specimens without
20	morphological descriptions. Egg capsules were collected from caged (6 mm mesh) and
21	uncaged basalt colonization blocks placed on the seafloor as part of a larger colonization
22	study (Micheli et al. 2002; Mullineaux et al. 2003). Nine blocks collected in beds of
23	vestimentiferan tubeworms or mussels, during the May 1998 cruise, contained egg

1	capsules with embryos and developing veligers. Larvae in the egg capsules had not yet
2	formed identifiable shells preventing morphological identification; therefore, they were
3	identified by direct 18S sequence comparisons, following DNA extraction using the
4	DNAeasy kit (Qiagen) and PCR amplification of part of the 18S gene as described above.
5	Sequences obtained from the egg capsules were compared directly to the gastropod 18S
6	sequences from known adults using Sequencher v. 4.2.2 (Gene Codes Corp.) and
7	MacClade (Maddison and Maddison 2000). The shape, size and number of embryos per
8	capsule were characterized for 20 egg capsules under a Zeiss Stemi 2000-C dissecting
9	scope.
10	
11	Results
12	Morphological Identification and Descriptions
13	Morphological characteristics of twenty-seven vent gastropod protoconchs from
14	the NEPR were compiled from the literature and from our new descriptions of SEM
15	images (see below) presented in this study (Table 1). With these new morphological
16	descriptions, twenty descriptions are diagnostic to the species level, five descriptions are
17	diagnostic to the genus level, and two descriptions are diagnostic to the family level. All
18	descriptions from the literature, except for one, were from protoconchs preserved on
19	identified or identifiable juveniles. The exception is a larval description of
20	Phymorhynchus sp., based upon veligers found within egg capsules collected on the
21	Galápagos Rift morphologically identified as belonging to the genus Phymorhynchus
22	(Gustafson et al. 1991). Unnamed archaeogastropods in Lutz et al. (1986) and Lutz et al.
23	(1984) are now identifiable as L. cristatus and L. ovalis, respectively (McLean 1988).

1	Unnamed Rimula? in Turner et al. (1985), figure 11a-c has since been identified as
2	Temnozaga parilis (McLean 1989a). The specimen in Mullineaux et al. (1996) figure 1F,
3	11 was mistakenly identified as Lepetodrilus ovalis instead of L. elevatus.
4	SEM images yielded new protoconch descriptions for three species, Gorgoleptis
5	spiralis, Echinopelta fistulosa and Nodopelta subnoda. The protoconch of G. spiralis is
6	characterized by a small size (~ 150 $\mu m)$ and an overall coarse punctuate sculpture which
7	forms close parallel rows away from the axis (Fig 2 a, b). This description of the G .
8	spiralis protoconch allows it to be differentiated from the G. emarginatus protoconch
9	(Fig 2 c) which is similar in shape, sculpture, and aperture (Mullineaux et al. 1996), but is
10	larger in size (~180 μ m). G. spiralis is distinguished from another close relative,
11	Clypeosectus delectus (Fig 2 d), by the scalloped aperture. Additional images of C.
12	delectus protoconchs on two juveniles (not shown) were consistent with the previous
13	protoconch description and larval identification.
14	In the Peltospiridae, the protoconch of Echinopelta fistulosa (Fig 3) is distinct at
15	the species level, but the protoconch of Nodopelta subnoda (Fig 4) is not. Both
16	protoconchs were similar to protoconchs of previously described peltospirids based on
17	the presence of ridges. E. fistulosa protoconchs can be easily distinguished from other
18	members of the peltospirid family by the restriction of ridges to the apex and indentations
19	or "shelves" at the axis of coiling. The protoconch of <i>N. subnoda</i> (Fig 4 a, b) is not
20	distinguishable to species due to a high degree of similarity to P. operculata (Mullineaux
21	et al. 1996, Fig 3e). Both species are characterized by smooth parallel ridges and
22	moderate size (215-220 μ m). However, if all peltospirid protoconchs were imaged, the
23	number, spacing, or pattern of ridges may be determined to be species-specific.

Protoconchs on juveniles of the six additional species (*Lepetodrilus cristatus*, *L. elevatus*, *L. ovalis*, *L. pustulosus*, *Nodopelta rigneae*, and *Peltospira operculata*) were not
 informative to species level, and are not shown. Images of *N. rigneae* and *P. operculata* were uninformative due to corrosion or other damage. All imaged *Lepetodrilus* spp.
 protoconchs exhibited the previously described punctuate sculpture, but lacked visible
 species-specific characteristics.

7

8 Identification of a Defined Group of Species - RFLP Design

9 For the Lepetodrilus spp. and peltospirid groups, 16S rDNA sequences from 10 morphologically identifiable adults and juveniles contained suitable variation among 11 species to design species-specific RFLP assays (Fig S1, GenBank accession numbers 12 listed in Table S2). Species-specific banding patterns were obtained for L. cristatus, L. 13 elevatus, L. ovalis, L. pustulosus, and L. tevnianus by digesting the initial PCR product 14 with the restriction enzymes Sty I, Stu I, and Dra I (Promega) together, using Buffer B, 15 for 3-4 hours at 37° C (Fig 5). Due to decreased efficiency (75-100%) of Sty I in Buffer 16 B (Promega), digestion of PCR products from L. ovalis often resulted in the expected 17 bands representative of the cut positions as well as a remaining uncut band. Inclusion of 18 Stu I is optional but makes an additional cut which facilitates identification of L. 19 cristatus. 20 Diagnostic banding patterns were obtained for the peltospirids (Fig 6 and S2) by

digesting the initial PCR product with Dra I (New England Biolabs) for 3-4 hours at 37°
C and, if necessary, with Ssp I and EcoR V (New England Biolabs) in buffer 3 for 3-4

23 hours at 37° C in parallel. The first Dra I digestion identifies Peltospira operculata, P.

1	delicata, and Echinopelta fistulosa, to species, and is predicted to identify H. hirta to
2	species. The Dra I digestion identifies the genus Nodopelta, but does not distinguish
3	among Nodopelta species. The second Ssp I and EcoR V digestion of the initial PCR
4	product was only necessary to distinguish among Nodopelta species.
5	Digestions to test for false positives and negatives produced the expected banding
6	patterns for all adult individuals from each species with the exception of Peltospira
7	delicata and a single specimen of Lepetodrilus cristatus (data not shown). Ssp I and
8	EcoR V digestion of three individuals of P. delicata produced the banding patterns
9	expected for P. operculata. However, the banding patterns in the initial Dra I digestion
10	produced the expected banding patterns for both P. delicata and P. operculata. All L.
11	elevatus specimens produced the same banding pattern, independent of vent field (9°N or
12	21°N) or vent site (tubeworm or mussel dominated), suggesting that this assay does not
13	distinguish between the cryptic species or subspecies of L. elevatus (Johnson et al. 2008;
14	Matabos et al. 2008b).
15	
16	Identification with No Morphological Information – Application of 'Barcodes'
17	Diagnostic 18S rDNA sequences were obtained from 39 adult gastropods
18	representing 19 species (Table S2). GenBank contained two different sequences of the
19	18S rDNA region for each of Eulepetopsis vitrea and Peltospira operculata. To resolve
20	possible sequence errors in these and other species, all of the existing GenBank
21	sequences, except for Melanodrymia aurantiaca (specimens were not available), were
22	verified with additional sequences in the present study. No other inconsistencies were
23	uncovered. GenBank sequences and their accession numbers that were identical to

1	sequences obtained during the present study are included in Table S2. Sequences
2	representing 'barcodes' for thirteen new species were added to the public database,
3	bringing the total number of NEPR vent-endemic gastropod species with 18S rDNA
4	sequences to twenty.
5	Genetic variation of the partial 18S sequence (~550 bp) was sufficient to resolve
6	higher level systematic relationships and differentiate among the vent gastropod species,
7	except among Lepetodrilus species (Fig S3). Neomphalids showed the highest
8	divergence amongst species with greater than 2.7% (15 bp), with a maximum of 6% (33
9	bp) divergence between species pairs. Genera within Peltospiridae differed by at least
10	1.3% (7 bp) and up to 3.5% (19 bp), but differences among species within genera were
11	lower, 0.4-1.2% (2-9 bp) divergence. The pair wise difference between Peltospira
12	delicata and P. operculata was 0.7% (4 bp) and between Nodopelta heminoda and N.
13	subnoda was only 0.4% (2 bp). Lepetodrilids differ from all other families by greater
14	than 8% (45 bp) sequence divergence, however differentiation within the family was very
15	low. Lepetodrilus elevatus, L. ovalis and L. pustulosus were identical over 540 bp and
16	differed from Gorgoleptis spiralis and from L. cristatus by only one base pair. In the
17	Caenogastropoda, Gymnobela sp. A and Phymorhynchus major varied by only one base
18	pair (Fig S4). No intraspecies variation was detected.

20 Application to Larval Samples

Forty-one gastropod larvae, collected in the sediment trap over the course of four days, were analyzed to determine what the staged approach could reveal about temporal variation of gastropod larvae in the field (Table 2). Twenty-one of the specimens could

1 be identified under a light microscope by morphology alone. The remaining twenty 2 specimens were divided into three morpho-groups, Lepetodrilus spp., peltospirids, and 3 unknown for further identification. The Lepetodrilus spp. and peltospirids were suitable 4 for RFLP analyses (Fig 6); however, genomic extractions of *Lepetodrilus* spp. (n=3) and 5 the peltospirids (n=2) failed to yield sufficient DNA for PCR and RFLP for all but one 6 peltospirid. The unknown peltospirid was successfully identified as *P. operculata*. 7 Two distinct morpho-types in the unknown group, *?Laeviphitus* sp. (EF549683) 8 and Unknown Benthic sp. A (sensu Mullineaux et al. 2005) (EF549681), were sequenced 9 for identification by direct comparison of 18S rDNA (100% success, n=2 of each 10 species). These morpho-types were chosen due to their relatively high abundances in this 11 and other collections. Neither ?Laeviphitus sp. nor Unknown Benthic sp. A matched any 12 gastropod species within the current 18S database for gastropods along the northern EPR. 13 Morphological identifications of larval Cyathermia naticoides and Bathymargarites 14 symplector were verified through successful direct 18S rDNA sequence comparison of 15 one individual each. 16 The sequence database was used to identify lenticular egg capsules (Fig 7) 17 collected on colonization blocks. Comparison of partial 18S rDNA sequences from the 18 lenticular egg capsules revealed that the capsules were deposited by the conid gastropod 19 *Gymnobela* sp. A. Sequences from six egg capsules, including yellow, pink and 20 transparent capsules, had a 100% match over 540 bp with each other and adult 21 *Gymnobela* sp. A, but differed from *Phymorhynchus major* by a single base pair (Fig S4). 22 The lenticular egg capsules occurred in abundances ranging from 1 to 390 egg capsules per block with densities up to 1.6 capsules per cm^2 . Egg capsules are 2.0-3.0 mm 23

(average 2.6 mm) in diameter, harbor approximately 90-200 embryos, and have a pink,
 yellow or transparent coloration.

3

4 **Discussion**

5 The Staged Approach to Larval Identification

6 Our results indicate that thirty-three of the forty-one gastropod species inhabiting 7 the northern EPR (NEPR) can now be identified to species at the larval stage using a 8 combination of morphological and molecular techniques. This is nearly double the 9 number of previously identifiable gastropod species at the larval stage. Twenty-six of the 10 twenty-seven gastropod species known to occur specifically in the 9° 50' N region can be 11 identified to species, an increase of fifteen species. Only Provanna ios has no 12 morphological or molecular information, due to scarce collection and poor preservation 13 of the larval shell on juveniles and adults. New SEM protoconch descriptions of 14 Gorgoleptis spiralis, Echinopelta fistulosa and Nodopelta subnoda increase the total of 15 morphological protoconch descriptions for NEPR gastropods to twenty diagnostic to the 16 species level, five diagnostic to the genus level, and two diagnostic to the family level. 17 The RFLP assays allow for identification of five species within the genus Lepetodrilus 18 and six species of peltospirids. 18S rDNA sequences for twenty species are available in 19 GenBank, providing a 'barcode' with which to identify NEPR gastropod species at any 20 stage.

Morphological and molecular techniques have advantages and disadvantages such that the combination of the two is better than either alone. The level of morphological identification in Table 1 is based on identification under a dissection and/or compound

1 light microscope. Morphological identification under a light microscope requires little 2 equipment and thus has a low direct cost. On average, more than 25 specimens can be 3 identified in an hour. Specimens are not destroyed in the identification process. 4 Molecular identification techniques, though currently more costly and time 5 consuming, contribute to new morphological descriptions and complement 6 morphological identification techniques when morphology alone is insufficient. 7 Molecular techniques require more specialized and expensive equipment and reagents. 8 The procedure requires more steps, with each step ranging in time commitment from 15 9 minutes to 4 hours. The longer steps do not require continuous labor and attention but 10 make the entire process from sample to sequence or RFLP assay take 1-3+ days. Multiple 11 samples can be processed during this time period. The use of RFLPs eliminates 12 sequencing, which incurs a per sample cost, thus reducing the overall cost for 13 identification of many samples. The restriction enzymes Ssp I and EcoR V are more 14 expensive than Dra I, therefore we suggest performing the Dra I digest for the 15 peltospirids first and then performing an Ssp I and EcoR V digest only if necessary to 16 distinguish among *Nodopelta* species. This will also prevent the potential for false 17 identification of *Peltospira delicata* as *P. operculata*. *Peltospira* spp. are generally more 18 common in adult collections than *Nodopelta* spp. at the 9° 50' N area (TS and DA 19 personal observation) and Hirtopelta hirta are not known from the 9° 50' N area (Warén 20 and Bouchet 2001); therefore it is reasonable to predict that *Peltospira* spp. larvae, 21 identifiable with the Dra I digestion alone, will be more common than other unknown 22 peltospirids in the plankton.

1	Lepetodrilus spp. and the peltospirids are two groups of species that exemplify the
2	need to combine molecular and morphological techniques. SEM imaging of unknown
3	peltospirid and Lepetodrilus sp. larvae and additional Lepetodrilus spp. juveniles yielded
4	no additional information about species-specific protoconch characters. The similarity
5	between Peltospira operculata and Nodopelta subnoda protoconchs and amongst the
6	Lepetodrilus spp. protoconchs in SEM images indicates that morphology is not, at
7	present, a useful tool for identifying these species in the larval stage. Additional imaging
8	of juvenile specimens of the unknown peltospirids could yield species-specific
9	descriptions such as that for Echinopelta fistulosa; however, peltospirids were rare in the
10	collections from multiple cruises screened in this study and, like other gastropods, have a
11	high occurrence of protoconch loss and damage. The available morphological
12	information does, however, allow for designation into defined groups to facilitate
13	effective RFLP assays.
14	Such genetic approaches may also be needed for identifications of early stages of
15	the Caenogastropoda. In the present study, the egg capsules of one species of
16	caenogastropod in the NEPR, Gymnobela sp. A, were identified to species and described
17	morphologically following molecular identification. Other egg capsules and veligers have
18	been described morphologically by Gustafson and colleagues (1991) but have not been
19	definitively assigned to a species. The protoconch and teloconch of caenogastropods
20	quickly corrode such that additional morphological descriptions from retained
21	protoconchs are unlikely. Gymnobela sp. A has not yet been described as a species due to
22	high levels of corrosion of examined specimens (Warén and Bouchet 2001). Even
23	juveniles with intact protoconchs may not yield species-specific protoconch descriptions

1 because descriptions of juvenile shells are also rare. Direct sequence comparison can 2 help guide morphological descriptions of caenogastropods' and other gastropods' 3 protoconchs by identifying juveniles, by identifying egg capsules containing developed 4 veligers, and by directly identifying planktonic larvae. 5 Similarity between species and lack of descriptions are just some of the problems 6 that prevent morphological identification. Specimens in an embryo, egg case or 7 trochophore stage, or with a damaged shell, may have no taxonomically informative 8 morphology. These specimens can still be identified using genetics, as demonstrated in 9 the present study by the identification of the under-developed Gymnobela sp. A veligers 10 within egg cases.

11

12 Daily Larval Collections

13 Identification of larvae from sediment trap collections demonstrated the utility of 14 the combined morphological and molecular approach, but also illustrated some remaining 15 challenges. Larval collections varied daily in abundance and species composition (Table 16 2). The high abundance of Unknown Benthic sp. A and *?Laeviphitus* sp. is intriguing 17 because the corresponding adults have not been found in the nearby benthos, or in the 18 sequence database. Species of Laeviphitus have not been found on the EPR as adults, but 19 the genus was originally described from larvae, and the PI and PII on larval specimens 20 from this study and Mullineaux et al. 2005 closely resemble other Laeviphitus spp. 21 larvae. ?Laeviphitus larvae may exhibit high abundances near vents due to the increased 22 food supply in the plankton but not reside at vents as adults. Unknown Benthic sp. A 23 does not have PII growth suggesting a non-feeding larval form, so increased food supply

does not explain the high abundances for this morpho-species. Alternatively, adults of
 ?Laeviphitus and Unknown Benthic sp. A may be present in the vent periphery which is
 not well sampled or be from the surrounding non-vent habitat.

4 Difficulties in DNA extraction prevented the identification of one unknown 5 peltospirid (1 of 2) and three *Lepetodrilus* spp. (3 of 3). The identified *Peltospira* 6 operculata and a Lepetodrilus were extracted within 3 months of collection, whereas 7 attempts to extract DNA from the other larvae occurred > 6 months after collection. 8 DNA could have been too degraded after 6 months to successfully amplify in PCR 9 reactions. Extractions of *Lepetodrilus* spp. may not have been successful, even within 3 10 months, due to their relative small size. DNA was successfully extracted from larger 11 larvae (>240 µm; see Table 1), such as *Cyathermia naticoides* (1 of 1) and *?Laeviphitus* 12 sp (1 of 1) up to 6 months after collection. The 20% DMSO - saturated salt solution was 13 chosen for this experiment due to its successful application in a hydrothermal vent setting 14 (Comtet et al. 2000) and its success in a study comparing preservation methods for other 15 marine invertebrates (Dawson et al. 1998). The use of sediment traps limited the 16 preservatives available to us, as the preservative needed to be heavier than seawater. 17 Alternative preservatives, such as ethanol (Sawada et al. 2008), sampling techniques, 18 such as plankton pumps, and minimizing the time between preservation and analysis 19 could yield sufficient amounts of high quality DNA for identification of unknown larvae 20 using RFLP and direct sequence comparisons.

21

22 Egg Capsules

1	The lenticular egg capsules (Fig 7) were identified molecularly to belong to
2	Gymnobela sp. A. Sequences from the egg capsules and Gymnobela sp. A differed from
3	Phymorhynchus major by one base pair (Fig S4). The habitat in which the egg capsules
4	were collected is consistent with the typical adult distribution of Gymnobela sp. A.
5	Gymnobela sp. A have been collected in mussel aggregations near active venting where
6	the egg capsules were found (DA and TS unpublished data). Blocks placed in the
7	periphery, where Phymorhynchus major has been predominantly observed, did not
8	contain any lenticular egg capsules. Additionally, the 6 mm mesh cages would have
9	prevented larger gastropods, like Phymorhynchus major (up to 72 mm) (Warén and
10	Bouchet 2001), from entering and depositing eggs. The smaller size of Gymnobela sp. A,
11	12 mm maximum length (Warén and Bouchet 2001), would allow the gastropod to enter
12	the cages and is consistent with the size of the egg capsules. Phymorhynchus sp. is
13	believed to deposit large, 14-16 mm diameter, lenticular egg capsules found on the
14	Galápagos Rift (Gustafson et al. 1991). The egg capsules have similar shapes which
15	supports the close phylogenetic relationship between the two species, but the different
16	sizes and adult distributions suggest that the egg capsules collected on the basalt blocks
17	belonged to Gymnobela sp. A.
18	Identification of the Gymnobela sp. A egg capsules serves as an example of how
19	molecular identification contributes to our understanding of life histories and the ecology
20	of vent gastropods. Gymnobela sp. A is a species for which little life history data were
21	previously known due to poor preservation of larval and juvenile shells on adult

- 22 specimens. This early life-history information allows us to compare *Gymnobela* sp. A to
- 23 other gastropod species with different larval dispersal potential, i.e. planktotrophic larvae

1 and non-planktotrophic, lecithotrophic larvae. Comparisons of the population genetics, 2 benthic ecology and larval supply at the species level for species with different life 3 histories may provide additional insights into the role of larval dispersal in structuring 4 benthic communities. 5 Application of molecular techniques is likely to be especially important for 6 identifying larvae of species for which culturing is difficult, such as other hydrothermal 7 vent species (not just gastropods), deep-sea species, and some polar species. However, 8 coastal species may also require a combined molecular and morphological approach to 9 yield species-specific identifications for closely related species (Pardo et al. 2009). 10 Ideally, initial sequence comparisons would yield species-level identifications and new 11 species-specific taxonomical descriptions, as exemplified here with the identification of 12 the *Gymnobela* sp. A egg capsules. However, even after initial identification there may 13 not be sufficient differences in morphological characteristics between closely related 14 species to morphologically identify all larvae to the species-level. We would then 15 recommend application of our staged approach to identify a maximum number of species 16 in an efficient and economical manner.

17

18 Acknowledgements

We are grateful to the chief scientists, captains and crews of the R/V *Atlantis*, the shipboard scientific support group, and the Alvin group for their support during multiple collection cruises. We thank Amy Baco-Taylor, Kate Buckman, Abigail Fusaro, and Robert Jennings for training and assistance with molecular techniques. Louis Kerr supported the scanning electron microscopy. Carly Strasser, Stace Beaulieu, Robert

Jennings, Jesús Pineda, and Glenn Flierl contributed to discussions at various stages of
 research and manuscript preparation. We thank two anonymous reviewers for their
 comments.

4	Funding was provided by as Woods Hole Oceanographic Institution Deep Ocean
5	Exploration Institute grant to L.M and S. Beaulieu, National Science Foundation grants
6	OCE-0424953, OCE-9712233, and OCE-9619605 to L.M, OCE-0327261 to T.S., and
7	OCE-0002458 to K. Von Damm, and a National Defense Science and Engineering
8	Graduate fellowship to D.A. The experiments comply with the current laws of the United
9	States of America.
10	

References

2	Adams DK, Mullineaux LS (2008) Supply of gastropod larvae to hydrothermal vents
3	reflects transport from local larval sources. Limnol. Oceanogr. 53: 1945-1955
4	Comtet T, Jollivet D, Khripounoff A, Segonzac M, Dixon DR (2000) Molecular and
5	morphological identification of settlement-stage vent mussel larvae,
6	Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent
7	fields on the Mid-Atlantic Ridge. Limnol. Oceanogr. 45: 1655-1661
8	Dawson MN, Raskoff KA, Jacobs DK (1998) Field preservation of marine invertebrate
9	tissue for DNA analyses. Mol. Mar. Biol. Biotechnol. 7: 145-152
10	Douris V, Cameron RAD, Rodakis GC, Lecanidou R (1998) Mitocondrial
11	phylogeography of the land snail Albinaria in Crete: Long-term geological and
12	short-term vicariance effects. Evolution 52: 116-125
13	Dreyer J, Knick KE, Flickinger WB, Van Dover CL (2005) Development of macrofaunal
14	community structure in mussel beds on the northern East Pacific Rise. Mar. Ecol.
15	Prog. Ser. 302: 121-134
16	Epifanio CE, Perovich G, Dittel AI, Cary SC (1999) Development and behavior of
17	megalopa larvae and juveniles of the hydrothermal vent crab Bythograea
18	thermydron. Mar. Ecol. Prog. Ser. 185: 147-154
19	Govenar B, Freeman M, Bergquist DC, Johnson GA, Fisher CR (2004) Composition of a
20	one-year-old Riftia pachyptila community following a clearance experiment:
21	Insight to succession patterns at deep-sea hydrothermal vents. Biol. Bull. 207:
22	177-182
23	Gustafson RG, Littlewood DTJ, Lutz RA (1991) Gastropod egg capsules and their
24	contents from deep-sea hydrothermal vent environments. Biol. Bull. 180: 34-55
25	Harasewych MG, McArthur AG (2000) A molecular phylogeny of the Patellogastropoda
26	(Mollusca: Gastropoda). Mar. Biol. 137: 183-194
27	Johnson SB, Warén A, Vrijenhoek RC (2008) DNA barcoding of Lepetodrilus limpets
28	reveals cryptic species. J. Shellfish Res. 27: 43-52
29	Khripounoff A, Comtet T, Vangriesheim A, Crassous P (2000) Near-bottom biological
30	and mineral particle flux in the Lucky Strike hydrothermal vent area (Mid-
31	Atlantic Ridge). J. Mar. Syst. 2: 101-118
32	Lutz R, Jablonski D, Rhoads D, Turner R (1980) Larval dispersal of a deep-sea
33	hydrothermal vent bivalve from the Galápagos Rift. Mar. Biol. 57: 127-133
34	Lutz RA, Bouchet P, Jablonski D, Turner RD, Warén A (1986) Larval ecology of
35	mollusks at deep-sea hydrothermal vents. Am. Malacol. Bull. 4: 49-54
36	Lutz RA, Jablonski D, Turner RD (1984) Larval development and dispersal at deep-sea
37	hydrothermal vents. Science 226: 1451-1454
38	Maddison DR, Maddison WP (2000) MacClade. Sinauer Associates, Sunderland, Mass.
39	Marsh AG, Mullineaux LS, Young CM, Manahan DT (2001) Larval dispersal potential
40	of the tubeworm <i>Riftia pachyptila</i> at deep-sea hydrothermal vents. Nature 411:
41	77-80
42	Matabos M, le Bris N, Pendlebury SJD, Theibaut E (2008a) Role of physico-chemical
43	environment on gastropod assemblages at hydrothermal vents on the East Pacific
44	Rise (13 degrees N/EPR). J. Mar. Biol. Assoc. U.K. 88: 995-1008

1	Matabos M, Theibaut E, Le Guen D, Sadosky F, Jollivet D, Bonhomme F (2008b)
2	Geographic clines and stepping-stone patterns detected along the East Pacific Rise
3	in the vetigastropod Lepetodrilus elevatus reflect species crypticism. Mar. Biol.
4	153: 545-563
5	McLean JH (1988) New archaeogastropod limpets from hydrothermal vents -
6	superfamily Lepetodrilacea .1. Systematic descriptions. Philos. Trans. R. Soc.
7	Lond. B Biol. Sci. 319: 1-&
8	McLean JH (1989a) New archaeogastropod limpets from hydrothermal vents - new
9	family Peltospiridae, new superfamily Peltospiracea. Zool. Scr. 18: 49-66
10	McLean JH (1989b) New slit-limpets (Scissurellacea and Fissurellacea) from
11	hydrothermal vents. Part 1. Systematic descriptions and comparisons based on
12	shell and radular characters. Contrib. Sci. 407: 1-31
13	McLean JH (1990) Neolepetopsidae, a new docoglossate limpet family from
14	hydrothermal vents and its relevance to patellogastropod evolution. J. Zool. 222:
15	485-528
16	Metaxas A (2004) Spatial and temporal patterns in larval supply at hydrothermal vents in
17	the northeast Pacific Ocean. Limnol. Oceanogr. 49: 1949-1956
18	Micheli F, Peterson CH, Johnson GA, Mullineaux LS, Mills SW, Sancho G, Fisher CR,
19	Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal
20	vents. Ecol. Monogr. 72: 365-382
21	Mills SW, Mullineaux LS, Tyler PA (2007) Habitat associations in gastropod species at
22	East Pacific Rise hydrothermal vents (9 degrees 50'N). Biol. Bull. 212: 185-194
23	Mullineaux LS, Kim SL, Pooley A, Lutz RA (1996) Identification of archaeogastropod
24	larvae from a hydrothermal vent community. Mar. Biol. 124: 551-560
25	Mullineaux LS, Mills SW, Sweetman AK, Beaudreau AH, Metaxas A, Hunt HL (2005)
26	Vertical, lateral, and temporal structure in larval distributions at hydrothermal
27	vents. Mar. Ecol. Prog. Ser. 293: 1-16
28	Mullineaux LS, Peterson CH, Micheli F, Mills SW (2003) Successional mechanism
29	varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecol.
30	Monogr. 73: 523-542
31	Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM,
32	Mortiz C, Mable BK (eds) Molecular systematics. Sinauer Associates,
33	Sunderland, Mass., pp 205-248
34	Pardo LM, Ampuero D, Veliz D (2009) Using morphological and molecular tools to
35	identify megalopae larvae collected in the field: the case of sympatric Cancer
36	crabs. J. Mar. Biol. Assoc. U.K. 89: 481-490
37	Pradillon F, le Bris N, Shillito B, Young CM, Gaill F (2005) Influence of environmental
38	conditions on early development of the hydrothermal vent polychaete Alvinella
39	<i>pompejana</i> . J. Exp. Biol. 208: 1551-1561
40	Pradillon F, Schmidt A, Peplies J, Dubilier N (2007) Species identification of marine
41	invertebrate early stages by whole-larvae in situ hybridisation of 18S ribosomal
42	RNA. Mar. Ecol. Prog. Ser. 333: 103-116
43	Pradillon F, Shillito B, Chervin JC, Hamel G, Gaill F (2004) Pressure vessels for in vivo
44	studies of deep-sea fauna. High Pressure Research 24: 237-246

1	Reid DG, Rumbak E, Thomas RH (1996) DNA, morphology, and fossils: phylogeny and
2	evolutionary rates of the gastropod genus Littorina. Philos. Trans. R. Soc. Lond.
3	B Biol. Sci. 351: 877-895
4	Savolainen V, Cowan RS, Volger AP, Roderick GK, Lane R (2005) Towards writing the
5	encyclopaedia of life: an introduction to DNA barcoding. Philos. Trans. R. Soc.
6	Lond. B Biol. Sci. 360: 1805-1811
7	Sawada H, Saito H, Hosoi M, Toyohara H (2008) Evaluation of PCR methods for fixed
8	bivalve larvae. J. Mar. Biol. Assoc. U.K. 88: 1441-1449
9	Swofford DL (2003) PAUP* Phylogenetic Analysis Using Parisony (*and Other
10	Methods). Version 4.0. Sinauer Associates, Sunderland, Massachusetts
11	Turner RD, Lutz R, Jablonski D (1985) Modes of molluscan larval development at deep-
12	sea hydrothermal vents. In: Jones ML (ed) Bulletin of the Biological Society of
13	Washington, pp 167-184
14	Van Dover CL (2003) Variation in community structure within hydrothermal vent mussel
15	beds of the East Pacific Rise. Mar. Ecol. Prog. Ser. 253: 55-66
16	Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction
17	of DNA for PCR-based typing from forensic material. BioTechniques 10: 506-
18	513
19	Warén A, Bouchet P (1989) New gastropods from East Pacific hydrothermal vents. Zool.
20	Scr. 18: 67-102
21	Warén A, Bouchet P (1993) New records, species, genera, and a new family of
22	gastropods from hydrothermal vents and hydrocarbon seeps. Zool. Scr. 22: 1-90
23	Warén A, Bouchet P (2001) Gastropoda and Monoplacophora from hydrothermal vents
24	and seeps; New taxa and records. Veliger 44: 116-231
25	
26	

1 Figure Capitons	1	Figure	Captions
-------------------	---	--------	----------

3 **Fig 1** Flow chart of staged identification procedure.

5	Fig 2 SEM images of juvenile and larval Gorgoleptis spiralis and closely related species.
6	(a) G. spiralis protoconch on juvenile. A broader view of the juvenile shell is not shown
7	due to breakage during sample preparation. (b) G. spiralis larva. (c) G. emarginatus
8	larva. (d) Clypeosectus delectus larva. Scale bars are 10 µm for all shells
9	
10	Fig 3 SEMs of juvenile and larval <i>Echinopelta fistulosa</i> . (a) <i>E. fistulosa</i> juvenile. The
11	white arrow denotes the location where the protoconch was previously attached. (b)
12	Protoconch detached during manipulations of <i>E. fistulosa</i> juvenile pictured in a. Two <i>E.</i>
13	fistulosa larvae are pictured to show the ridged sculpture restricted to the axis (c) and the
14	indentations on the sides in the same orientation as the protoconch from the juvenile (d).
15	Scale bars are 10 μ m for all shells except a (100 μ m)
16	
17	Fig 4 SEMs of juveniles and larvae in the family Peltospiridae. (a) Nodopelta subnoda
18	juvenile. (b) N. subnoda protoconch attached to juvenile pictured in a. (c, d) Peltospirid
19	larvae that closely resembled both N. subnoda and P. operculata in shape and sculpture.
20	Scale bars are 10 μ m for all shells except A (100 μ m)
21	
22	Fig 5 Restriction fragment length polymorphism assays showing species-specific
23	banding patterns using Dra I, Stu I, and Sty I. Le, Lepetodrilus elevatus; Lo, L. ovalis;

Lp, *L. pustulosus*; Lc, *L. cristatus*; Lt, *L. tevnianus*. 100 bp ladder is included as size
 standard

4	Fig 6 Restriction fragment length polymorphism assays showing species-specific
5	banding patterns for Dra I (a) and Ssp I with EcoR V (b). Nh, Nodopelta heminoda; Nr,
6	N. rigneae; Ns, N. subnoda; Pd, Peltospira delicata; Po, P. operculata; Hh, Hirtopelta
7	hirta. H. hirta digestions are predicted patterns inferred from sequence data, since no
8	specimens were available. 100 bp ladder is included as size standard
9	
10	Fig 7 Light micrographs of the lenticular egg capsules. (a) Egg capsules density
11	deposited on a basalt block. The arched striations on the block are from cutting the
12	blocks. Scale bar is 1 cm. (b) Close up of three egg capsules at different stages. The
13	right case is yellow with yolky globular embryos inside. The empty middle capsule
14	clearly shows the oval escape aperture from which the larvae escaped. The bottom right
15	capsule is pinkish and contains developing larvae with bilobed vela but without fully
16	developed protoconchs. Scale bar is 1 mm
17	
18	Table 1 Summary of known protoconch and egg capsule characteristics for vent
19	gastropods on the northern East Pacific Rise. Taxonomic placement and range as in
20	Warén and Bouchet (2001) with modifications to the range based on authors'
21	unpublished collections. The third column indicates the taxonomic level to which larvae
22	of the given species can be identified. Bold type represents a new description or a more
23	refined level of taxonomic identification contributed by this study. Dashed lines indicate

that the morphology is unknown. The size is the maximum length of the shell in
micrometers or the maximum diameter of the egg capsule in millimeters, if preceded by
EC. Figure numbers reference the appropriate figure showing morphology for the given
species. N/A, not applicable; Gal, Galápagos; irreg., irregular; pnt., punctuate; sin.,
sinuous; str., straight; sl.: slightly
Table 2 Abundances of gastropod larvae at Choo Choo vent site, 9° 49' N East Pacific

Rise, each day collected over a 0.5 m² area. The first four species were identified to
species morphologically. *Peltospira operculata* was identified using RFLP assays. The
morpho-types Unknown Benthic sp. A and ?*Laeviphitus* sp. were sequenced but were not
successfully assigned to species

Morphology: see Table 1 Identifiable Yes Successful Identification to Species No Identifiable to Yes 16S RFLP Genus Family/Genus Yes ⁺Lepetodrilus Fig 5 (species unknown) No Family Yes 16S RFLP Peltospirids Fig 6 No No Unknown: No Diagonistic Yes 18S Sequence Morphology Comparison Morphology

Fig 1.

Fig. 2

Fig. 3

Fig. 5

Fig. 6

Fig. 7

		Level of	General Protoconch Description				
Species	Range	Morph ID	Size µm	Sculpture/Shape	Aperture	Source	Figure
Subclass Patellogastropoda							
Family Neolepetopsidae							
Eulepetopsis vitrea	21°N -17°S, Gal	Species	250	Deep side indentations, flattened, smooth	str. flared	McLean 1990 &	
				Surface looks grainy in light microscopy		Mills unpublished data	
Neolepetopsis densata	12°-13°N, Gal	Genus	230	Deep side indentations, knobbed & pnt. apex	str.	Warén & Bouchet 2001	
Neolepetopsis occulta	21°N						
Neolepetopsis verruca	21°N						
Family Trochidae							
Bathymargarites symplector	13°N-17°S	Species	240+	Smooth apex, outer axial striations	sin. Flared	Warén & Bouchet 1993	
Moelleriopsis sp.	13°N						
Family Lepetodrilidae							
Clypeosectus delectus	21°N -17°S, Gal	Species	175	Coarse pnt., forms close rows at curve	sl. sin.	McLean 1989b	2 d
Gorgoleptis emarginatus	21-9°N	Species	180	Coarse pnt., forms close rows at curve	scalloped	Mullineaux et al 1996	2 c
Gorgoleptis spiralis	13-9°N	Species	150	Coarse pnt., forms close rows at curve	scalloped	This study	2 a,b
Lepetodrilus cristatus	21-9°N, Gal	Genus		Pnt.	str.	Lutz et al 1986 ^a	,
Lepetodrilus elevatus	Gal, 21°N -17°S	Genus	170-180	Pnt.	str.	Mullineaux et al 1996	
Lepetodrilus ovalis	21°N -17°S, Gal	Genus	170-180	Pnt.	str.	Mullineaux et al 1996	
Lepetodrilus pustulosus	21°N -17°S, Gal	Genus	170-180	Pnt.	str.	This study	
Lepetodrilus tevnianus	11°-9°N					2	
Family Sutilizonidae							
Sutilizona theca	13°N	Species	250	Deep pnt. in lineations following shell curve		McLean 1989b	
Temnozaga parilis	21°N	Species	170	Smooth		Turner et al 1985 ^b	
Family Fissurellidae		·					
Cornisepta levinae	13°N						
Subclass Uncertain							
Superfamily Neomphaloidea							
Family Neomphalidae							
Cyathermia naticoides	21-9°N	Species	240	Initial bold reticulate web, distal smooth	sl sin.	Warén & Bouchet 1989	
Lacunoides exquisitus	Gal	Species	160	Initial irreg. net, distal smooth, bulbous shape	str.	Warén & Bouchet 1989	
Melanodrymia aurantiaca	21°N -17°S, Gal	Species	250	Fine irreg. reticulate, full	sin. flared,	Mullineaux et al 1996	
					ridge above		
Melanodrymia galeronae	13°N	Species	250	Very fine reticulate net, full	extended	Warén & Bouchet 2001	
Neomphalus fretterae	21-9°N, Gal	Species	260	Initial fine irreg. reticulate, distal smooth	sin. flared	Turner et al 1985	
Pachydermia laevis	21°N -17°S	Species	250	Reticulate web fading at aperature	str. flared	Warén & Bouchet 1989	
Planorbidella planispira	21-9°N	Species	215	Initial coarse irreg. net, distal smooth, broad	str.	Warén & Bouchet 1989	
				curvature			
Solutigyra reticulata	21-13°N	Species	210	Initial irreg net, distal smooth, rounded curve	str.	Warén & Bouchet 1989	

^a Unnamed archaeogastropod limpet in figure 2a-c, partial loss of sculpture ^b Unnamed *Rimula*(?) figures 11a-c

		Level of		General Protoconch Description			
Species	Range	Morph ID	Size µm	Sculpture/Shape	Aperture	Source	Figure
Family Peltospiridae							
Ctenopelta porifera	13-9°N	Species	325	Ridged parallel then become irreg. near apex, Ridges end abruntly at $\frac{1}{4}$	scalloped	Warén & Bouchet 1993	
Echinopelta fistulosa	21-9°N	Species	210	Ridges only at apex. deep side indentations	str.	This study	3
Hirtopelta hirta	21-13°N					1110 5000	2
Lirapex granularis	21-9°N	Species	220	Ridges fade towards axis, pnt, apex	str.	Mullineaux et al 1996 &	
Lirapex humata	21°N	Species	180	Strong ridges irreg, spaced at apex	str.	Warén & Bouchet 1989	
Nodopelta heminoda	21-9°N						
Nodopelta rigneae	13-9°N						
Nodopelta subnoda	9°N-17°S	Family	215	Smooth parallel ridges	str.	This study	4 a.b
Peltospira delicata	13-9°N					5	,
Peltospira lamellifera	13°N						
Peltospira operculata	21-9°N	Family	220	Smooth parallel ridges	str.	Mullineaux et al 1996	
Rhynchopelta concentrica	21°N-17°S	Species	290	Irreg. ridges, shelf at axis	str.	Mullineaux et al 1996 & McLean 1989a	
Order Neogastropoda Family Conidae							
Gymnobela sp. A	13-9°N	EC Species	EC 2-3	Egg capsules lenticular, white, yellow or pink, elliptical escape aperature	N/A	This study	7
Phymorhynchus sp.	21°-9°N, Gal	Genus	EC 14-16	Egg capsules lenticular, white to transparent,	N/A	Gustafson et al. 1991	
(P. major)	(13-9°N)			elongated escape aperture (s-shaped)			
	()		235	Protoconch PII: spiral raised ridges in		Warén & Bouchet 2001	
				direction of growth, crossed by perpendicular riblets		Lutz et al 1986	
Order Mesogastropoda							
Family Provannidae							
Provanna ios	21°N -17°S. Gal						
Provanna muricata	21°N. Gal						

Table	2.
-------	----

Species	13-Nov	14-Nov	15-Nov	16-Nov	Total
B. symplector		1			1
C. delectus		1			1
C. naticoides	5	10	2	1	18
G. spiralis	1				1
P. operculata			1		1
Unknown peltospirid		1			1
Lepetodrilus spp.		1		2	3
Unknown benthic sp. A	1	2	1	1	5
?Laeviphitus sp.	2	4	2		8
Unknown	1	1			2
Daily Total	10	21	6	4	41

	[1]					[60]
L. L.	cristatus tevnianus	ACATGGCTCT	TTGCTAGTTA	TAGA.AATGA G-T	GAATAGAGAG	TCTGACCTGC	CCGGTGATGT
L.	elevatus		C	A			
L. L.	ovalis pustulosus		T GC	G-A-AA- A-GA-			
L.	cristatus	AGGAATTAAA	CGGCCGCAGT	ACCCTGACTG	TGCAAAGGTA	GCATAATCAT	TTGCCTTTTA
ш.	elevatus						
L.	ovalis						
L.	pustulosus	G					
L.	cristatus	ATTGAGGGCT	GGTATGAAAG	GTTTGACGTG	GACTAAGCTG	TCTCCTGAGG	ATTATGTAGA
L.	tevnianus		A				
L.	elevatus		A				
ш. L.	pustulosus		A				
	-						
L.	cristatus	AGTTAACTTT	TAGGTGAAA <u>A</u>	GGCCTAAATT	TGGTTATGGG	ACGAGAAGAC	CCCGTTGAGC
ь. L.	elevatus	-AT		AA	-A		
L.	ovalis	-AT		A	-AAC		A
L.	pustulosus	-AT		AG	-AAC-G		
L.	cristatus	TTTAACTAAA	СТТАААААТА	GGAAAAACAG	TGA.TTGTAT	TGAACTAATT	TTTAAGGTGT
L.	tevnianus		GGGG		AAG		C <u>CC</u>
L.	elevatus	T	G-G	GA	-A-AG		
ь. L.	ovalis pustulosus	GT	<u>T</u> G	A			-CA-
	<u> </u>			-			•
L.	cristatus	TTTTAGTGGG	GGAAAACGGA	GGAACAAATA	AAGCTTCCTC	TTTTTAAAAAT	AAATTAAATT
ь. L.	elevatus			G		T	G G-A
L.	ovalis			T-T-AG		GC	GGG-G
L.	pustulosus			T-GT		G	-GG
L.	cristatus	ATACTAAA.T	AGAAGTATTG	AGTAGA	ΤΤΤΤΑΑΤΑΑ.	TAAATTAAGA	CTGGTGTGTA
L.	tevnianus	-CAC	-A	$\mathbb{T}^{G^{}}$	AT- <u>-</u> T	G	C-
L.	elevatus		-A-GG-	-AT	GAG-A	G	AC-
ш. L.	pustulosus	TTGT-TC-	GT-GAGAT	-AA-GGAA	GTT	AG	G
_	-						
L.	cristatus	AAGGTTTAAT	AAAAGGATCC	GTTGAAATTG	ATGAAGACGA	TTAAGGGAGA	AAGTTACCAC
ь. L.	elevatus	G		TGT	AA		G
L.	ovalis	-TG	-G	AA	-TTT	A-	G <u></u> T
L.	pustulosus	-TG-		G-A	-GT-GT		G
L.	cristatus	GGGGATAACA	GCGTAATTTC	TTCTGGAGAG	TTCATATTGA	AGGAGGGGTT	TGCGACCTCG
<i>L</i> .	tevnianus						
<i>Ц</i> .	elevatus ovalis						
L.	pustulosus	=					
τ	aristatura	ᢧᡎᢕᡎᡎᡊᡊ᠊ᡘ᠊ᠬᠬ	<u>ս սնս սս ասսա</u>	CCCCCmCm2	CACOMOCOCA	൨൨൨൬൬൨൨൬൨൬	C T T C T T C T
ь. L.	tevnianus	AIGIIGGAI'I'			T-TA-	GGG11GG1C1	GIICGACCAT
L.	elevatus			-A	T-CA-		
L.	ovalis			-A	TTA-		
ц.	pustulosus			AA	\1.1.1.1.H-		
L.	cristatus	AAAAGTCTTA	CGTGATCT [6	518]			
L.	tevnianus						
ш. L.	ovalis						
L.	pustulosus	T					

Fig S1 Sequence Alignment of *Lepetodrilus* spp.

Alignment of partial 16S sequences from five *Lepetodrilus* species. Box denotes the Dra I recognition site. Underline denotes the Stu I recognition site. Double underline denotes the Sty I recognition site

	[[1]				[50]
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	ACATGGCTCT C C	TTGTTTTCA G-GA-G AA- AA- GGAA-A AGAAA-	TAGA.TAAAG -A-A.T AG CG G GA-AAG- AGA-GG	AGTCGGACCT	GCCCAGTGAA G G G G
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	TTATT -G-AA -A-TGA.T -A-TGA -AGTGA.T GGAAG.C- TTAAGAC-	TTAACGGCCG	CGGTACCCTG	ACCGTGCAAA	GGTAGCATAA
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	TCATTTGCCT	TTTAATTGGA AA- AA- AA- AA- AA-	GGCTAGTATG A G G G G	AATGGTTTGA C 	CGAAAGCGAA A-A-T A-A A-G AGG A-A
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	ACTGTCTCTT G G	ATTTGCTTCC AT-ATT -C-AT-ATT -CC-AA-ATT -C-AT-ATT -C-AY-ATT TC-AT-AGT	<u>TAAAAATTAA</u>	TTTTGATGTG 	AAGAAGCATT
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	<u>AATATT</u> TCTA <u>GTA</u> TA TA GGC	AAAGACAAGA	AGACCCTGTT A A A	GAGCTTAAAT T-GC T-C T-GC T-GC	AATGAAAAAA ATGTG G-AATG G-GATG GAGT -GAGG
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	ACAAAATTAT TGTACAGGTA -GTTTA -ATTTA -ATTTA -ATG-G-TA GGTAA	ATAAGTAGAA TAG-T-A TG-TC-A TG-TC-A TG-GTC-A TGTC-A TGTC-A	AATTATTT GGA AC AC C-A-R T-A-G	TAAA -T-TA -TTTTCT- -TT-TCT- -TT-TCT- -TT-TCT- -TT-TCT- -TT-TCT- -TT-TCT- -TT-TCT- -TT-TCT-	TTTAGTTGGG
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	GCGACTGAGG	AACAAAA.TA G- TA G- T-AA-	GCTTCCTTTC AA T T A	ATTGTTTTAG -G-TAAGAAA TGAAAAAAGA A-AAAAGA T-ATAAGAGA TAAAAG-A -AGAAG-GAT	CACAC ATAATTA TTAATTTTAT TTTATTGGTA TTTAT TATA ATA-GATATA
E. H. N. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	.TTGCAAAGA TTT-TT TT T-ATTT-T T-ATTT-T TATTT TATGGT	TCCAGCCAAA CAATG <u>GT-</u> GT- AAA AAAT	TGCTGATCAA -TTT -CT-G -CT-G -TT-G -TTT -TTTT	AGAAAATAGT -AGT -AGT -AGT -AGT -AGT	TACCACAGGG T T
E. H. N. P. P.	fistulosa hirta heminoda rigneae subnoda delicata operculata	ATAACAGCGT	AATCTTCTTT 	TAGAGCTCCC GT-AT T-T- T-TT T-TT T-TT T-TT	ATCGAAAAAA	20]

Fig S2 Sequence Alignment of Peltospiridae.

Alignment of partial 16S sequences from *Echinopelta fistulosa*, *Hirtopelta hirta*, *Nodopelta heminoda*, *N. rigneae*, *N. subnoda*, *Peltospira delicata* and *P. operculata*.
Box denotes the Dra I recognition site. Underline denotes the Ssp I recognition site.
Double underline denotes the EcoR V recognition site. Note that *P. delicata* sequence contains a single nucleotide polymorphism (at 325 bp) which creates an allele-specific Ssp I recognition site

____ 0.01 substitutions/site

Fig S3 Neighbor Joining Tree

Relationship between vent gastropods found near 9° N based on partial 18S sequences. Bootstrap values (> 50%) are shown on branches. Note the inclusion of Unknown Benthic sp. A within Peltospiridae

Egg Consulos	[1]		3 3 C C C 3 E C C 3		[50]
Gymnobela sp. A Phymorhynchus major					
Egg Capsules <i>Gymnobela</i> sp. A <i>Phymorhynchus major</i>	TACGGTGAAA 	CCGCGAATGG	СТСАТТАААТ	CAGTCGAGGT	TCCTTAGATG
Egg Capsules Gymnobela sp. A Phymorhynchus major	ATCCAAATTT 	ACTTGGATAA	CTGTGGTAAT	TCTAGAGCTA	ATACATGCCG T
Egg Capsules Gymnobela sp. A Phymorhynchus major	AACAGCTCCG	ACCCCTCGGG	GAAAGAGCGC	TTTTATTAGT 	TCAAAACCAG
Egg Capsules <i>Gymnobela</i> sp. A <i>Phymorhynchus major</i>	TCGGGTTCTG	CCCGTCCTTT	GGTGACTCTG	GATAACTTTG	TGCCGATCGC
Egg Capsules Gymnobela sp. A Phymorhynchus major	ATGGCCTCGA	GCCGGCGACG	CATCTTTCAA	ATGTCTGCCC	TATCAAATGA
Egg Capsules Gymnobela sp. A Phymorhynchus major	CGATGGTACG	TGATCTGCCT 	ACCATGTTAG	CAACGGGTAG	CGGGGAATCA
Egg Capsules Gymnobela sp. A Phymorhynchus major	GGGTTCGATT	CCGGAGAGGG	AGCATGAGAA	ACGGCTACCA	CATCCAAGGA
Egg Capsules <i>Gymnobela</i> sp. A <i>Phymorhynchus major</i>	AGGCAGCAGG	CGCGCAACTT	ACCCACTCCT	GGCACGGGGA	GGTAGTGACG
Egg Capsules <i>Gymnobela</i> sp. A <i>Phymorhynchus major</i>	АААААТААСА 	ATACGGAACT	CTTTTGAGGC	TCCGTAATTG	GAATGAGTAC
Egg Capsules <i>Gymnobela</i> sp. A	ACTTTAAACC	CTTTAACGAG	GATCTATTGG	[530]	
Phymorhynchus major	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????		

Fig S4 Sequence Alignment to Identify Egg Capsules.

Alignment of partial 18S sequences from six unknown lenticular egg capsules compared to *Gymnobela* sp. A and *Phymorhynchus major* (n = 2, each). Dashes indicate no change from reference. The last 30 bp of *P. major* were not sequenced and are thus represented as question marks. Note that *P. major* differs by a single base pair (number 150, shown in red)

Dates	Cruise	Sites	Lat/Long	Samples	Use in study	References
Oct-Nov 2006	AT15-12, LADDER	P Vent (9°N Biogeotransect)	9° 50.3' N, 104° 17.5' W	Benthic - grabs &	Adult DNA (Lepetodrilus	
Apr-May 2005	AT11-26	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - grabs	Adult DNA	Lutz et al. 2008
Nov 2004	AT11-20	Choo Choo (9°N Biogeotransect)	9° 49.6' N, 104° 17.4' W	Sediment Trap	Time series larval supply	Adams and Mullineaux 2008
		Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
Mar-Apr 2004	AT11-9	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - grabs	Adult DNA, Juveniles for SEM	Lutz et al. 2008
		V Vent, A Vent, L Vent	9° 46'-47' N, 104° 17' W			
Jan-Feb 2002	AT07-06	Various - 21°N	20° 47'-50' N, 109° 06'-09' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
		9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
		V Vent, A Vent, L Vent	9° 46'-47' N, 104° 17' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
		D Vent, E Vent	9° 33' N, 104° 15' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
		K Vent	9° 30' N, 104° 14' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
		F Vent	9° 17' N, 104° 13' W	Benthic - grabs	Adult DNA, Juveniles for SEM	
May 2000	AT03-51, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Hunt et al. 2004
				Plankton Pump	Larvae for SEM	Mullineaux et al. 2005
Dec 1999	AT03-44, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Hunt et al. 2004
				Plankton Pump	Larvae for SEM	Mullineaux et al. 2005
Apr 1999	AT03-33, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Mullineaux et al. 2009
				Plankton Pump	Larvae for SEM	Mullineaux et al. 2005
Dec 1998	AT03-29, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Leninan et al. 2008
				Plankton Pump	Larvae for SEM	Mullineaux et al. 2005
May 1998	AT-03-19, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Mullineaux et al. 2003; Mullineaux et al. 2009
Dec 1995	132-19, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	Micheli et al. 2002; Mullineaux et al. 2003; Mills
Apr 1995	132-4, LARVe	Various - 9°N Biogeotransect	9° 49'-51' N, 104° 17' W	Benthic - colonization blocks	Juveniles for SEM	et al. 2007 Micheli et al. 2002; Mullineaux et al. 2003; Mills et al. 2007

Table S1Collection cruises

List of cruises, and cruise information, during which samples used in this study were collected. Multiple cruises were part of the National Science Foundation funded programs: Larvae At Ridge Vents (LARVe) and Larval Dispersal on the Deep East pacific Rise

(LADDER). The 9°N Biogeotransect is a routinely sampled area with multiple diffuse flow and high temperature vents found between 9° 49'-51' N on the East Pacific Rise. SEM – scanning electron microscopy.

References

- Adams DK, Mullineaux LS (2008) Supply of gastropod larvae to hydrothermal vents reflects transport from local larval sources. Limnology and Oceanography 53: 1945-1955
- Hunt HL, Metaxas A, Jennings RM, Halanych KM, Mullineaux LS (2004) Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9 degrees 50' N). Deep-sea research part I Oceanographic Research Papers 51: 225-234
- Lenihan HS, Mills SW, Mullineaux LS, Peterson CH, Fisher CR, Micheli F (2008) Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel *Bathymodiolus thermophilus*. Deep-sea research part I - Oceanographic Research Papers 55: 1707-1717
- Lutz RA, Shank TM, Luther GW, Vetriani C, Tolstoy M, Nuzzio DB, Moore TS, Waldhauser F, Crespo-Medina M, Chatziefthimiou AD, Annis ER, Reed AJ (2008) Interrelationships between vent fluid chemistry, temperature, seismic activity, and biological community structure at a mussel-dominated, deep-sea hydrothermal vent along the East Pacific Rise. Journal of Shellfish Research 27: 177-190
- Micheli F, Peterson CH, Johnson GA, Mullineaux LS, Mills SW, Sancho G, Fisher CR, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72: 365-382
- Mills SW, Mullineaux LS, Tyler PA (2007) Habitat associations in gastropod species at East Pacific Rise hydrothermal vents (9 degrees 50'N). Biol. Bull. 212: 185-194
- Mullineaux LS, Micheli F, Peterson CH, Lenihan HS, Markus N (2009) Imprint of past environmental regimes on structure and succession of a deep-sea hydrothermal vent community. Oecologia 161: 387-400
- Mullineaux LS, Mills SW, Sweetman AK, Beaudreau AH, Metaxas A, Hunt HL (2005) Vertical, lateral, and temporal structure in larval distributions at hydrothermal vents. Marine Ecology Progress Series 293: 1-16
- Mullineaux LS, Peterson CH, Micheli F, Mills SW (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecological Monographs 73: 523-542

	GenBank Accession #		
Species	185	16S	
Subclass Patellogastropoda			
Family Neolepetopsidae			
Eulepetopsis vitrea	AF046052 (3)	U86355	
Neolepetopsis densata			
Neolepetopsis occulta			
Neolepetopsis verruca			
Subclass Vetigastropoda			
Family Trochidae	A \$2000010 (O)		
Bathymargarites symplector	AY090810(2)		
<i>Moelleriopsis</i> sp.			
Chypappagetus delectus			
Ciypeosecius delecius			
Corgolantis spiralis	FF540668 (1)		
Lepetodrilus cristatus	EF549671 (2)	FF549687 (2)	
Lepetodrilus elevatus	AY145381(2)	LI86348 (2)	
Lepetodrilus ovalis	AY923887 (2)	U86351(2)	
Lepetodrilus pustulosus	AY923886 (3)	EF549690 (2)	
Lepetodrilus tevnianus		GQ404502 (2)	
Family Sutilizonidae			
Sutilizona theca			
Temnozaga parilis			
Family Fissurellidae			
Cornisepta levinae			
Subclass Uncertain			
Superfamily Neomphaloidea			
Family Neomphalidae			
Cyathermia naticoides	AY090803 (2)		
Lacunoides exquisitus	A V000805		
Melanodrymia advantaca Melanodrymia ogleronge	A 1 090803		
Neomphalus fretterae	$\Delta V 0 0 0 8 0 6 (2)$		
Pachydermia laevis	FF549673 (2)		
Planorbidella planispira	EI 549075 (2)		
Solutigyra reticulata			
Family Peltospiridae			
Ctenopelta porifera			
Echinopelta fistulosa	EF549667 (2)	EF549691 (2)	
Hirtopelta hirta		AY163397	
Lirapex granularis			
Lirapex humata			
Nodopelta heminoda	EF549675 (1)	EF549692 (2)	
Nodopelta rigneae	EF549676 (1)	EF549693 (1)	
Nodopelta subnoda	EF549674 (2)	EF549694 (1)	
Peltospira delicata	AY923893 (3)	EF549695-6 (6)	
Peltospira lamellifera	A V000007 (2)	FE540(07 (C)	
Pettospira operculata	A I 090807 (3)	EF 34909 7 (0)	
Subclass Caenogastropoda	AFJ34900 (2)		
Family Conidae			
Gymnobela sp. A	EF549685 (3)		
Phymorhynchus maior	EF549684 (1)		
Family Provannidae	(-)		
Provanna ios			
Provanna muricata			
Unknown larvae			
Unknown Benthic sp. A	EF549681 (2)		
<i>?Laeviphitus</i> sp.	EF549683 (2)		

Table S2 GenBank accessionnumbers for north EPR ventgastropods

Accession numbers in **bold** were new species contributed by this study. All existing 18S sequences in GenBank, except for *Melanodrymia aurantiaca* and *Hirtopelta hirta*, were verified by additional sequences. 16S sequences in GenBank were verified for the Lepetodrilidae and Peltospiridae. The number of individuals sequenced is in parentheses