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Abstract 

Vesicomyid clams, vestimentiferans, and some bathymodiolin mussels from hydrothermal vents 

and cold seeps possess thiotrophic endosymbionts, high levels of hypotaurine and, in tissues with 

symbionts, thiotaurine. The latter, a product of hypotaurine and sulfide, may store and/or 

transport sulfide non-toxically, and the ratio to hypotaurine plus thiotaurine (Th/[H+Th]) may 

reflect an animal's sulfide exposure. To test this, we analyzed seep and vent animals with in situ 

sulfide measurements. Calyptogena kilmeri clams occur at high-sulfide seeps in Monterey 

Canyon, while C. (Vesicomya) pacifica clams occur at seeps with lower levels but take up and 

metabolize sulfide more effectively. From one seep where they co-occur, both had gill thiotaurine 
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contents at 22-25 mmol/kg wet mass, and while C. (V.) pacifica had a higher blood sulfide level, 

it had a lower Th/[H+Th] (0.39) than C. kilmeri (0.63). However, these same species from 

different seeps with lower sulfide exposures had lower ratios. Bathymodiolus thermophilus (East 

Pacific Rise [EPR 9˚50'N]) from high- (84 µM) and a low- (7 µM) sulfide vents had gill ratios of 

0.40 and 0.12, respectively. Trophosomes of Riftia pachyptila (EPR 9˚50'N) from medium- (33 

µM) and low- (4 µM) sulfide vents had ratios of 0.23 and 0.20, respectively (not significantly 

different). Ridgeia piscesae vestimentiferans (Juan de Fuca Ridge) have very different 

phenotypes at high- and low-sulfide sites, and their trophosomes had the greatest differences: 

0.81 and 0.04 ratios from high- and low-sulfide sites, respectively. Thus Th/[H+Th] may indicate 

sulfide exposure levels within species, but not in interspecies comparisons, possibly due to 

phylogenetic and metabolic differences. Total H+Th was constant within each species (except in 

R. piscesae); the sum may indicate the maximum potential sulfide load that a species faces. 
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Problem  

Certain animals around marine hydrothermal vents and cold seeps have formed a symbiotic 

relationship with chemosynthetic microbes. In particular, vesicomyid clams, vestimentiferans, 

and some bathymodiolin mussels take up hydrogen sulfide from vent or seep emissions for 

thiotrophic endosymbionts. These endosymbionts oxidize the sulfide ultimately to drive organic 

carbon fixation (Van Dover & Fry 1994). However, hydrogen sulfide is toxic to animals because 

it can bind to iron and disrupt mitochondrial function (Fisher 1990). Some of these animals have 

special sulfide binding proteins (e.g., modified hemoglobins) in their blood or hemolymph for 

transporting sulfide non-toxically from the environment to the symbionts (Arp et al. 1987; 

Childress et al. 1993; Kraus 1995; Zal et al. 2000). However, these proteins do not transport 

sulfide within cells (with the exception of intracellular hemoglobins reported in Solemya clams: 

Kraus et al. 1996), and other mechanisms of intracellular defense against sulfide have been 

proposed. For example, there are specialized sulfide-oxidizing organelles in epidermal tissue in 

some polychaetes including vestimentiferans (Menon et al. 2003). In some species such as the 

vent mussel Bathymodiolus thermophilus, sulfide is rapidly converted to thiosulfate as a means of 

detoxification (Powell & Somero 1986). Elemental sulfur has also been found in many of these 

animals; it has been proposed to be a non-toxic energy reserve produced by the bacteria (Vetter 

1985; Arndt et al. 2001). 

In recent years, another mechanism involving thiotaurine and hypotaurine has been proposed 

to serve in protection from and/or transport of sulfide (Alberic & Boulegue 1990; Pranal et al. 

1995; Pruski et al. 2000b). These unusual amino acids can be found at high levels in many 

vestimentiferans and bivalves from vents and seeps (Alberic 1986; Pranal et al. 1995; Pruski et 

al. 2000a). They are generally found only at low levels in hemolymph or blood, and thus are 

assumed to be primarily intracellular (Pruski et al. 2000a, Yin et al. 2000). In tissues with 

endosymbionts, hypotaurine appears to react with sulfide to produce thiotaurine (Pruski et al. 

2000b): 

 (hypotaurine) +NH3-CH2-CH2-SO-2 + SH --> +NH3-CH2-CH2-SO-2-SH (thiotaurine) 

The source of SH could be a free radical, a ligand donated by a carrier protein R as R-SSH, or a 

group donated by glutathione-SSH or other thiols. Synthesis of thiotaurine appears to be 

enzymatic (Pruski & Fiala-Medioni 2003). The reaction is reversible, and might serve to store 

sulfide non-toxically within cells, then release it as the endosymbionts deplete free sulfide. This 
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would be advantageous as sulfide concentration surrounding the animals can vary (Barry et al. 

1996; Shank et al. 1998).  

As evidence for the linkage between the thiotaurine reaction and symbiosis, hypotaurine is 

high in all tissues in these animals but thiotaurine occurs at high levels only in thiotrophic 

symbiont-bearing tissues, namely gills in some bivalves and trophosomes in vestimentiferans 

(Pruski et al. 2000a; Fiess et al. 2002). As a contrasting example, thiotaurine is very low in gills 

of methanotrophic mussels from cold seeps (Pruski et al. 2000b). The ratio of thiotaurine to total 

hypotaurine plus thiotaurine (Th/[H+Th]) has been proposed to be an indicator of the level of 

sulfide exposure in these animals (Pranal et al. 1995) and thiotaurine has been proposed to be a 

general marker of thiotrophic endosymbiosis (Pruski et al. 2000b). Indeed, the ratio tends to be 

higher in animals with higher environmental exposures to sulfide (Pruski et al. 2000a). Also, 

laboratory studies show that thiotaurine contents increase during sulfide exposure in symbiont-

bearing tissues of vesicomyids, bathymodiolins, vestimentiferans (Pruski & Fiala-Médioni 2003) 

and shallow-living solemyid clams (Joyner et al. 2003).  

The role of thiotaurine has recently been expanded by the discovery that two species of 

gastropods from hydrothermal vents contain substantial levels of thiotaurine (Rosenberg et al. 

2006), even though they lack endosymbionts. Nevertheless, the Th/[H+Th] ratio decreased in 

gastropods held in the lab with low or no sulfide while it stayed high in individuals held with high 

sulfide. These gastropods may be exposed to sulfide as a result of grazing on vent bacteria, and 

the thiotaurine finding supports the idea that this solute is used for sulfide detoxification and not 

necessarily for symbiosis. 

The question addressed here is whether thiotaurine is made by vent and seep animals in situ 

in proportion to sulfide exposure, and thus whether an estimate of in situ sulfide exposure can be 

made on field-collected samples by analyzing thiotaurine and hypotaurine contents (which can be 

easier to measure than sulfide). To date, the best correlations between sulfide exposure and 

thiotaurine have come from laboratory studies; correlations between amino acids and sulfide 

levels in situ have only been made with specimens not from the same time or site as the sulfide 

measurements. Here we have analyzed these amino acids in a variety of vent and seep animals 

(originally collected for other studies) most of which had associated ambient sulfide values (and 

blood/hemolymph measurements for some).  
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First, the vesicomyid seep clams Calyptogena/Vesicomya pacifica, C. kilmeri, and 

Ectengena extenta were analyzed. C. (V.) pacifica and C. kilmeri are the dominant vesicomyids at 

many cold seeps in Monterey Canyon off California. The two can be found living together, 

though one species dominates at certain locations; C. kilmeri prefers areas of high sulfide in the 

sediment, generally 4-18 mM, whereas C. (V.) pacifica is found in areas with lower sulfide levels, 

from trace levels to 4 mM (Barry et al. 1996, 1997). These differences are attributed to 

physiological and biochemical adaptations that give C. (V.) pacifica a much higher efficiency in 

both the uptake of sulfide through the foot and the oxidation of sulfide in the gills (Goffredi et al. 

2002). C. kilmeri in contrast has lower uptake and oxidation activity, presumably reflecting its 

need for higher sulfide environments. Specimens of both species were obtained from the same 

seep and from different seeps, along with measurements of sulfide levels in the sediment and/or 

the hemolymph (blood) (Goffredi et al. 2002). 

Ectengena extenta, closely related to C. kilmeri according to molecular analysis (Peek et al. 

1998), was collected at deep seeps (3200 m) in Monterey Canyon. Its sulfide exposure is 

unknown, but its gills have much higher levels of elemental sulfur (S0) than the other 

vesicomyids (Goffredi et al. 2004). Elemental sulfur has been proposed to be an energy reserve 

(as noted earlier), produced aerobically and then possibly used during anoxia (Vetter 1985; Arndt 

et al. 2001); it may be particularly important in animals most frequently experiencing the anoxia 

associated with sulfide-laden waters.  

The second type of animal analyzed was the bathymodiolin mussel Bathymodiolus 

thermophilus, collected from two different locations within a hydrothermal vent site on the East 

Pacific Rise. Precise sulfide measurements in the water were also made near the animals. 

Bathymodiolins can have one or both of two different symbionts that specialize on either sulfide 

or methane for chemosynthesis (Distel et al. 1995), although in previous work only the 

thiotrophic symbiont was found in B. thermophilus (Fisher et al. 1987). The mussels can also 

obtain nutrients through filter feeding (Page et al. 1991); thus they may have lower overall sulfide 

usage, which could explain their relatively low hypotaurine and thiotaurine contents (Pruski et al. 

2000b). 

Vestimentiferans were the final type of symbiotic animal analyzed. Specimens of the giant 

tubeworm Riftia pachyptila were collected from two very different vent sites on the East Pacific 

Rise (Govenar et al. 2005); sulfide measurements were made in the water near their plumes and 
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at the base of their tubes. Ridgeia piscesae vestimentiferans were taken from two very different 

habitats on the Juan de Fuca Ridge. This tubeworm can exhibit very distinct phenotypes, 

depending on the local habitat and possibly sulfide-acquisition strategies. Although sulfide levels 

were not available for the Ridgeia specimens used here, the two collection sites are known to 

have very different sulfide levels (Urcuyo et al. 2003). Animals at diffuse-flow basalt sites are 

exposed to low sulfide and generally have a characteristic "long-skinny" (LS) morphology, while 

animals from a high-sulfide chimney have a "short-fat" (SF) body (Robigou et al. 1993; Sarrazin 

et al. 1997; Urcuyo et al. 1998; 2003). The morphologies are so different that they were once 

considered to be separate species, but genomic analyses have revealed them to be the same 

(Southward et al. 1995, 1996; Black et al. 1997, 1998; Carney et al. 2002). Both LS and SF types 

were used in this study. 

Thiotaurine and hypotaurine are closely related to taurine, an amino acid often found as a 

major organic osmolyte in shallow-water invertebrates. Like all osmoconforming marine 

invertebrates, cells of polychaetes and mollusks accumulate free amino acids, methylamines and 

sometimes polyols to equalize their cellular osmotic pressures with that of the extracellular fluid 

and seawater. These organic osmolytes often have other cytoprotective functions beyond 

providing osmotic balance, and vary in composition in correlation with metabolic adaptations, 

temperature, and ocean depth (Yancey et al. 2002; Yancey 2005). Taurine contents, for example, 

decline with ocean depth (at least in bivalves, gastropods and anthozoans; Pruski et al. 2000a; 

Fiess et al. 2002; Yancey et al. 2002, 2004; Rosenberg et al. 2006). In general taurine levels have 

not been found to shift with changing sulfide exposure, but Joyner et al. (2003) recently found 

changes in taurine as well as hypotaurine and thiotaurine in shallow symbiotic clams. Therefore, 

contents of taurine, as well as other major sulfur-containing organic solutes, were also measured 

in all specimens to determine whether there were any trends. 

 

Study Areas 

Animals were collected from, and sulfide measurements were made at 1) Monterey Canyon 

(California) cold seeps, including Clam Field (36º 44.0´N, 122º 2.0´ W; 950 m depth) on January 

5, 1999, Invert Cliff (1000 m) on September 21, 1999, and Crescent Slump (3200 m) on 

November 3, 2000, 2) Eel River cold seeps off Eureka, California (510-520 m depth), on April 

29, 2001, 3) hydrothermal vents (2500-2550 m depth) at the Mussel Bed (December 10  to 12, 
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2002), Tica (December 1 to 14, 2002) and Riftia Fields (December 1 to 11, 2002) sites in the 

9°50' N area of the East-Pacific Rise (EPR), and 4) the Main Endeavour Field of the Juan de Fuca 

Ridge on May 12, 2001, at the Clam Bed site (47º 57’N, 129º 05’W; 2194 m depth) and on May 

10, 2001, at the Smoke and Mirrors sulfide edifice called Strawberry Fields (47º 56’N, 128º 

05’W; 2184 m depth). 

 

Materials and Methods 

Specimen Collection 

Specimens were collected using various remotely operated vehicles (ROVs) from several 

locations, most originally for other studies. Calyptogena (Vesicomya) pacifica were collected at 

Clam Field (Monterey Canyon) and Eel River seeps, and C. kilmeri from Clam Field and Invert 

Cliff (Monterey). Ectengena extenta were from the Crescent Slump (Monterey) seeps. Riftia 

pachyptila were collected at Tica and Riftia Field vents (9°50' N EPR). Bathymodiolus 

thermophilus were collected at two different locations in the Mussel Bed vents (9°50' N EPR). 

Ridgeia piscesae were collected from Main Endeavour Field of the Juan de Fuca Ridge. Those 

from the low-sulfide Clam Bed site had the LS morphology, while those from the high-sulfide 

Strawberry Fields edifice had the SF morphology (see Problem section).  

Some animals were immediately frozen on the ship, while others were kept alive in chilled 

(4º C) seawater on the ship, then later were either frozen or dissected for tissues that were 

immediately frozen. Freezing was at -70º C or on dry ice on the ship, followed by storage at -70 

to -80˚C in the laboratory.  

 

Sulfide analysis 

For C. (V.) pacifica and C. kilmeri from Monterey Canyon, sulfide levels (∑H2S) in the sediment 

pore water and in their hemolymphs were measured in a previous study by gas chromatography 

(for the same specimens used here) (Goffredi et al. 2002). For pacifica specimens from Eel River 

seeps, sulfide levels in sediment pore water at the collection site were determined by W. Ziebis 

using an amperometric sensor (published in Levin et al. 2003). Total concentrations of acid 

volatile sulfide in the environment of R. pachyptila and B. thermophilus were determined in situ 

as described in Le Bris et al. (2006), using the submersible flow analyzer ALCHIMIST installed 

on the DSRV Alvin. Large spatial gradients were observed at the scale of tubeworms (Le Bris et 
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al. 2006). Only the measurements obtained at the level of plumes were considered for this study, 

as the most relevant of sulfide exposure. 

 

Amino Acid Analysis  

Samples were shipped on dry ice to Whitman College where they were stored at -70oC until 

analysis. Frozen samples were weighed then rapidly homogenized in a glass dounce on ice in 1 

ml of 70% cold ethanol, and kept on ice for at least 3 hours before centrifugation at 15000 x g for 

20 minutes to remove proteins. Ethanol precipitation of unwanted proteins was used rather than 

the more common acid precipitation because acid degrades thiotaurine (Pruski et al. 2000b). 

Supernatants were dried overnight in a vacuum centrifuge then resuspended in 500 to 1000 µl of 

purified water. All samples were passed through C-18 delipidizing cartridges (Varian, Inc.) and 

0.45 micron filters (Millipore, Inc.) as described by Wolff et al. (1989). Samples were then 

analyzed for amino acids using high performance liquid chromatography (HPLC) as previously 

described (Wolff et al. 1989; Yin et al. 2000). Thiotaurine standard was synthesized by the 

method of Cavalini et al. (1963). 

 

Statistical Analysis  

Data are presented as means + S.D. Statistical significance (P < 0.5) was determined using 

Student's t-tests or ANOVA with Student-Newmann-Keuls post-tests. Arcsin conversions were 

used for statistics of ratios. 

 

Results 

Vesicomyids: Thiotaurine and Hypotaurine 

Thiotaurine was found at substantial levels in vesicomyid gills, with values ranging from about 

6.9 to 70 mmol/kg wet mass (Table 1, top rows). For C. (V.) pacifica, specimens from the site 

(Clam Field) with 4 mM ambient sulfide were compared to ones from the site (Eel River) with < 

2 mM ambient sulfide (Table 1). The former had higher thiotaurine (22.3 vs. 6.9) and lower 

hypotaurine (36.6 vs. 56.6), and thus a higher Th/[H+Th] ratio (0.39 vs 0.11). For C. kilmeri, 

specimens from the site (Clam Field) with 4 mM ambient sulfide and average of 1.1 mM blood 

(hemolymph) levels were compared to ones from the site (Invert Cliff) with higher (7-9 mM) 

ambient sulfide but lower blood levels (about 0.6 mM) (Table 1). The former had higher 

Table 1 here
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thiotaurine (25.2 vs 13.1) and lower hypotaurine (14.5 vs 21.8), and thus a higher Th/[H+Th] 

ratio (0.63 vs 0.39) (Table 1 and Fig. 1).   

 Interspecies comparisons yielded a different pattern for C. (V.) pacifica and C. kilmeri from 

the same site (Clam Field seep). C. (V.) pacifica had significantly higher blood levels of sulfide 

than C. kilmeri (2.7 vs 1.1 mM), yet the two species had statistically the same thiotaurine levels at 

22.3 and 25.1 mmol/kg, respectively (Table 1). Moreover, C. (V.) pacifica had a lower 

Th/[H+Th] ratio than C. kilmeri (0.39 vs. 0.63) (Table 1 and Fig. 1). 

 Ectengena extenta clams (not shown in Table 1) had the highest content of gill thiotaurine 

(70.5 + 5.9 mmol/kg), lowest content of hypotaurine (7.2 + 0.7) and highest Th/[H+Th] ratio, at 

0.91 + 0.004. 

 For the two species from Clam Field, foot tissue was also available for analysis (Table 2). 

Thiotaurine was extremely low in both, while hypotaurine was found at moderate levels that were 

lower than in gills (Table 1), Fig. 1 here

 

Bathymodiolins: Thiotaurine and Hypotaurine 

In Bathymodiolus thermophilus mussels from the EPR Mussel Bed site, both thiotaurine and 

hypotaurine were found at substantial levels in gill tissue (Table 1, middle rows). Mussels from 

the two collection sites were exposed to ambient waters with 84 µM and 7 µM sulfide, 

respectively. The former had higher thiotaurine (7.8 vs 3.1 mmol/kg wet mass.), lower 

hypotaurine (12.2 vs 21.0), and a higher ratio (0.40 vs 0.12) (Table 1 and Fig. 1). 

For foot tissue (Table 2; available for the low-sulfide group). thiotaurine was not 

statistically different than zero, but hypotaurine contents were the same as in gills (Table 1). 

 Table 2 here
Vestimentiferans: Thiotaurine and Hypotaurine  

In the Riftia pachyptila tubeworms from the EPR sites, thiotaurine levels were high in the 

trophosome (Table 1, lower middle rows). Worms from the two collections sites, Tica and Riftia 

Field, were exposed to different levels of sulfide: at the tube bases, the maximum ambient values 

were 283 and 81 µM, respectively, however at plume level the averages were 33 µM and 4 µM 

sulfide, respectively. The two groups showed no statistical differences: the averages for the Tica 

and Rifia Field groups were, respectively, 16.5 and 14.8 mmol/kg wet mass. for thiotaurine, 55.1 

and 59.4 for hypotaurine, and 0.23 and 0.20 for the Th/[H+Th] ratio (Table 1 and Fig. 1). 
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 In the Ridgeia piscesae tubeworms from Juan de Fuca vents, trophosomes varied greatly 

between the SF form, living on high-sulfide chimneys, and the LS form, living at a diffuse-flow 

basalt site (Table 1, lower rows). The SF trophosomes were greener than the LS ones, and the SF 

ethanol extracts were much darker in greenish-yellow color. In comparison to the LS group, the 

SF group had much higher thiotaurine content (49 vs 0.77 mmol/kg wet mass.), lower 

hypotaurine content (11 vs 17), and a much higher Th/[H+Th] ratio (0.81 vs 0.04) (Table 1 and 

Fig. 1). 

 Vestimentum and plume tissue from Riftia pachyptila were also analyzed (Table 2); these 

contained levels of thiotaurine considerably lower than in trophosomes (Table 1), but had high 

levels of hypotaurine. 

 

All Species: Total Thiotaurine plus Hypotaurine  

Totals of thiotaurine and hypotaurine contents of all specimens were calculated for symbiont-

bearing tissues, and the results are shown Table 1 (third to last column) and Fig. 2. Values did not 

differ within most species, even in those in which hypotaurine and thiotaurine differed 

considerably between test groups. The only exception to this was Ridgeia piscesae, in which the 

total was 60 mmol/kg wet mass in the high-sulfide SF groups and 18 mmol/kg wet mass in the 

low-sulfide LS group. Fig. 2 here
 

All Species: Taurine  

Taurine contents of all specimens are shown in the second-to-last column of Tables 1 and 2. For 

symbiont-bearing tissues (Table 1), values did not differ within species, even in those in which 

hypotaurine and thiotaurine differed considerably between test groups. Contents correlated 

inversely with depth of collection, consistent with previous studies. The vesicomyid clams from 

Eel River seeps at 0.5 km had 49 mmol/kg wet mass; the two vesicomyid species from Monterey 

Canyon from about 1 km depth had taurine contents of about 37-41 mmol/kg wet mass. (Table 1). 

Ridgeia piscesae were from ~2.1 km and had contents of about 29-33 mmol/kg wt wt. Both Riftia 

pachyptila and Bathymodiolus thermophilus were from 2.5 to 2.55 km, and had contents ranging 

from about 11 to 15 mmol/kg wet mass. Finally, the deepest species, Ectengena extenta from 3.2 

km, had contents of 10 mmol/kg wet mass (not shown in Table 1) 
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All Species: Other Osmotically Significant Organic Solutes 

The HPLC method revealed a number of other low-molecular-weight organic solutes at medium 

to high concentrations in all tissues. These solutes are presumed to serve as organic osmolytes, 

though they may have other functions. Some of these contained sulfur in vestimentiferans, as 

follows. In Riftia pachyptila trophosomes, an unknown tentatively identified as N-

methylhypotaurine (Yin et al. 2000) was found at estimated levels of 15.0 + 3.3 and 13.8 + 1.5 

mmol/kg wet mass in medium- and low-sulfide specimens, respectively (not significantly 

different). In Ridgeia piscesae trophosomes, for SF and LS phenotypes, respectively, N-

methyltaurine (Yin et al. 2000) was found at 14.0 + 6.5 and 11.6 + 3.1 mmol/kg wet mass (not 

significantly different) and N-methylhypotaurine ate 14.4 + 4.4 and 28.1 + 1.1 mmol/kg (P < 

0.05). All tissues in all species also contained cysteine and methionine but at low levels (< 1 

mmol/kg) that did not vary between test groups within species. Similar results were found for 

other tissues without symbionts (gill, foot, plume). 

The other major organic solutes in all tissues analyzed were glycine betaine (GB) and 

glycine in most species, and  (in decreasing order) alanine, proline and GB in vestimentiferans. 

The sum total of these solutes plus the methylated taurine derivatives are shown in the final 

columns of Tables 1 and 2. B. thermophilus tissues also contained substantial amounts of a solute 

that did not differ in HPLC peak area between groups. It reacted positively with ninhydrin, 

indicating an amine, but its elution time did not match any amino acid standard. Thus it could not 

be quantified.  

 

Discussion 

As found in previous studies, thiotaurine was considerably higher in tissues with symbionts 

(Table 1) than tissues without (Table 2). Our data for the symbiont-bearing tissues are generally 

consistent with the hypothesis that Th/[H+Th] ratios give an indication of sulfide exposure 

(Pranal et al. 1995; Pruski et al. 2000b) within species. However the ratios may not be useful for 

interspecies comparisons. We propose that a different parameter, the sum of hypotaurine and 

thiotaurine (H+Th), is a consistent and useful indicator of maximum sulfide exposure across 

species.  
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Th/[H+Th] Ratio as an Indicator of Current Exposure 

As predicted by the hypothesis, the Th/[H+Th] ratio was lower in symbiont-bearing tissues within 

most species in each group having the lower sulfide exposure (Table 1, Fig. 1). In Calyptogena 

(Vesicomya) pacifica, the correlation of the ratio to sulfide exposure was found for both sediment 

and blood/hemolymph sulfide levels. For C. kilmeri, the correlation was with the internal 

(blood/hemolymph) sulfide level only, a result suggests that internal sulfide may be a better 

indicator of in situ exposure than ambient sulfide. Thus, in future studies, measurements of 

internal sulfide will be needed. For the other species, blood/hemolymph values were not 

available, but the differences in ambient sulfide were mostly large enough that it seems 

reasonable to assume that these values reflect internal exposure. Indeed, earlier work on Riftia 

pachyptila found that internal sulfide levels were linked to total ambient sulfide concentrations 

(Goffredi et al. 1997). For Ridgeia piscesae, precise sulfide exposures were not available for 

these specimens, but the large sulfide differences between the habitats for the LF and SF 

phenotypes are well known (Robigou et al. 1993; Sarrazin et al. 1997; Urcuyo et al. 1998, 2003). 

For example, in one study an aggregate of LF forms was exposed (at plume level) to a mean 

sulfide concentration of 0.1 µM (Urcuyo et al. 2003). Moreover, the different intensities of 

greenish color we noted for the SF and LF trophosomes may be a marker of different sulfide 

exposures, because greenish color is highly correlated with tissue contents of elemental sulfur 

(Pflugfelder et al. 2005). 

The exception was Riftia pachyptila, in which the difference between ratios was not 

significant. While the two sites, Tica and Riftia Field, differ considerably in their overall 

chemistry including maximum ambient sulfide levels (Govenar et al. 2005), the magnitude and 

absolute difference in sulfide exposures between the two groups at plume level were considerably 

lower than for the other animals (Table 1). It is possible that the tubeworms were collected during 

a period of relatively low sulfide exposure; for example in another study, sulfide levels at Riftia 

base level ranged from 190 to 980 µM (Shank et al. 1998), compared to 81-283 µM in this study. 

Furthermore, in previous studies, these animals typically had higher Th/[H+Th] ratios (e.g., 0.55; 

Pruski et al. 2000a). Thus our data for Riftia do not contradict the hypothesis. However, our data 

suggest that the ratio may only be a useful indicator between groups subjected to large differences 

in exposure. 
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While Th/[H+Th] ratio may thus be useful as a rough indicator of exposure for intraspecies 

studies in some cases, it cannot be readily used for interspecies comparisons. This is most clearly 

shown in the data for C. (V.) pacifica vs C. kilmeri. For specimens from the same seep (Clam 

Field), the former had much higher blood sulfide levels (2.7 vs 1.1 mM), but had a much lower 

Th/[H+Th] ratio (0.39 vs 0.63), and both had about the same content of thiotaurine (Table 1). 

Possibly the ratio also reflects the metabolic turnover rate of sulfide, which is much higher in C. 

(V.) pacifica than in C. kilmeri (Goffredi et al. 2002).  

 

Total Hypotaurine plus Thiotaurine as an Indicator of Maximum Exposure 

This study revealed for the first time that a different parameter, total H+Th, may be consistent 

within most species, regardless of exposure and individual thiotaurine and hypotaurine levels 

(Fig. 2). We propose that H+Th is an indicator of potential sulfide load. That is, a species which 

may sometimes experience high internal sulfide loads may need to have a high reserve of 

hypotaurine for converting the sulfide to thiotaurine, regardless of sulfide exposure in any given 

period. This hypothesis is supported not only by the totals themselves but by these species 

features and differences: 

1) Calyptogena (Vesicomya) pacifica vs C. kilmeri. The former had much higher H+Th totals 

(Fig. 2) despite having lower Th/[H+Th] ratios (Fig. 1). This is consistent with their very 

different metabolic adaptations. C. (V.) pacifica routinely has much higher blood sulfide levels 

than C. kilmeri, as in the specimens used here at a seep where both were exposed to sulfide up to 

4 mM (Table 1). The difference is due to a variety of C. (V.) pacifica adaptations including a 

larger foot (which takes up sulfide from the environment), larger plasma volume, and higher 

concentration of zinc (which binds sulfide in transport proteins) (Goffredi et al. 2002). Moreover, 

other specimens of C. kilmeri from high-sulfide seeps (9-18 mM) had blood/hemolymph sulfide 

levels much lower than those of C. (V.) pacifica at the Clam Field (4 mM) seep (Goffredi et al. 

2002). Thus, the high levels of hypotaurine in C. (V.) pacifica may be produced so that it can be 

converted to thiotaurine in certain conditions. For example, if internal sulfide levels rise during 

some conditions, thiotaurine production could increase temporarily to prevent sulfide toxicity 

and/or to provide an energy reserve for periods of lower sulfide availability.  

2) Bathymodiolus thermophilus: while one group of these mussels had a fairly high 

T/[H+Th] ratio of 0.40, both groups had some of the lowest total H+Th of all species in this 
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study, along with the LS-type Ridgeia piscesae (Figs 1, 2). The low H+Th is consistent with this 

species' relatively low energy input from its thiotrophic symbionts, as indicated by its lack of 

elemental sulfur in its gills and low activity of symbiont enzymes (Fisher et al. 1987; Felbeck et 

al. 1981). 

3) Riftia pachyptila: the specimens here had fairly low T/[H+Th] ratios, consistent with their 

relatively low sulfide exposures (4 - 33 µM). However, their H+Th values were among the 

highest (Figs 1, 2). This could be a general species adaptation that allows the worms to tolerate 

much higher sulfide exposures than the specimens used here (e.g., Shank et al. 1998). Indeed, 

blood levels of sulfide have been found in Riftia at 3.3 mM (Childress et al. 1984), higher than 

those of C. (V.) pacifica (Table 1), which had somewhat lower H+Th values (Fig. 2). Overall, the 

low T/[H+Th] ratio combined with a high total H+Th in these Riftia specimens is consistent with 

the hypotheses that the ratio is indicative of recent exposure and that the total correlates with 

maximum exposure.  

4) Ridgeia piscesae: the pattern in this species for H+Th was unlike that of the other species, 

since the values were dramatically different between the SF and LS phenotypes (Fig. 2). 

However, this is not necessarily inconsistent with our hypothesis that H+Th relates to maximum 

exposure. These two phenotypes are so different that they were once thought to be separate 

species, and expression of some of their genes has been shown to be quite different between the 

two forms, and even within a form depending upon collection site (Carney et al. submitted). Thus 

it is possible that, in addition to altered gene expression for very different body forms, gene 

regulation related to hypotaurine-thiotaurine levels is also adjusted to reflect the maximum 

exposures in the very different habitats. Additionally, the Ridgeia piscesae forms have very 

different sulfide acquisition strategies. The LS growth form likely takes in sulfide from thin, 

sulfide-permeable posterior extensions (roots) of its tube (Urcuyo et al. 2003) while the SF form, 

without posterior roots, takes in sulfide through the plume as Riftia does. While sulfide levels 

within the substrate may be in the range of 100 µM (Urcuyo et al. 2003) for the LS animals, these 

animals’ exposure to sulfide through their roots may be limited by a surface area that is smaller 

than that of the plumes of the SF form. 

5) In addition to the species for which we had sulfide data, Ectengena extenta had high levels 

of elemental sulfur in their gills, suggesting a very high level of sulfide exposure (as noted 

earlier). Their gills also had both the highest T/[H+Th] ratio and H+Th total. The idea that high 
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total H+Th is a marker of maximum exposure is consistent with this, although measurements of 

the animals' ambient and internal sulfide exposures will be necessary to fully test this. 

Another possible adaptive reason for having high hypotaurine (and a high H+Th) is oxidative 

stress (Pruski et al. 2000a). Oxygen-centered (as well as sulfur-centered) radicals are generated in 

the presence of HS-, trace metal catalysts, and oxygen (Tapley et al. 1999). Hypotaurine is a 

strong antioxidant and can react with oxygen radicals (Aruoma et al. 1988). Whether the animals 

in this study with the highest hypotaurine contents are exposed to greater oxidative stress is 

uncertain, though the higher metabolic rate of C. (V.) pacifica compared to C. kilmeri (Barry et 

al. 1997) may generate more oxygen radicals.  

 

Taurine and Other Taurine Derivatives 

Taurine contains correlated roughly with depth of collection. This is a trend seen in several 

previous studies (Pruski et al. 2000a; Fiess et al. 2000) including animals without endosymbionts 

(Yancey et al. 2004: Rosenberg et al. 2006). The trend has been attributed to a reduction in 

dietary source of taurine with depth (Pruski et al. 2000a). However, shallow solemyid clams 

(which have symbionts) interconvert taurine, hypotaurine and thiotaurine (Joyner et al. 2003), 

and larvae of at least one bivalve species can synthesize taurine de novo (Welborn & Manahan 

1995). Thus a dietary source of taurine itself is not necessarily required in all mollusks. Other 

reasons for reduction in taurine with depth (e.g., (e.g., high pressure inhibition of reactions 

involved in taurine synthesis) need to be considered. 

 The other major taurine derivatives, N-methyltaurine in Ridgeia, and possibly N-

methylhypotaurine in Riftia, are unusual in that they have not been reported at osmotically 

significant levels in other marine invertebrates except for Lamellibrachia vestimentiferans (Yin et 

al. 2000). Their functions are unknown, but they may be an adaptation to pressure. Other 

methyated amines have been found to increase with depth in other organisms, and those solutes 

can stabilize proteins against inhibition by high pressure (Yancey et al. 2004; Yancey 2005). 

 

Conclusions 

Hypotaurine (H) and thiotaurine (Th) together are among the most abundant of all organic 

compounds in some vent and seep animals, but not in other marine invertebrates. Thus it is 

important to understand their function. This seems to be their ability to detoxify sulfide for basic 
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cytoprotection and/or storage for thiotrophic symbionts (Alberic & Boulegue 1990; Pranal et al. 

1995; Pruski et al. 2000b). The ratio of Th/[H+Th] increases with sulfide exposure in most 

species, and may serve as a rough indicator of such exposure in intraspecies studies. However, for 

interspecies comparisons, the ratio should be interpreted within the context of the total H+Th, 

which may be an indicator of the maximum sulfide exposure for each species or significantly 

different phenotype within a species. 
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Figure Legends 

Fig. 1. Ratios of thiotaurine to sum of hypotaurine and thiotaurine (Th/[H+Th]) for symbiont-

bearing tissues, from Table 1. "1" and "2" designate specimens with higher and lower sulfide 

exposures, respectively. Values are means + 1 SD; *different from the same species at the other 

seep or vent site; †different from the other species at the same seep (p < 0.05). 

Fig. 2. Sum of hypotaurine and thiotaurine (H+Th) for symbiont-bearing tissues, from Table 1. 

Values are means + 1 SD; *different from the same species at the other seep or vent site; 

†different from the other species at the same seep (p < 0.05). 
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