15 research outputs found

    From more testing to smart testing:data-guided SARS-CoV-2 testing choices, the Netherlands, May to September 2020

    Get PDF
    BACKGROUND: SARS-CoV-2 RT-PCR assays are more sensitive than rapid antigen detection assays (RDT) and can detect viral RNA even after an individual is no longer infectious. RDT can reduce the time to test and the results might better correlate with infectiousness. AIM: We assessed the ability of five RDT to identify infectious COVID-19 cases and systematically recorded the turnaround time of RT-PCR testing. METHODS: Sensitivity of RDT was determined using a serially diluted SARS-CoV-2 stock with known viral RNA concentration. The probability of detecting infectious virus at a given viral load was calculated using logistic regression of viral RNA concentration and matched culture results of 78 specimens from randomly selected non-hospitalised cases. The probability of each RDT to detect infectious cases was calculated as the sum of the projected probabilities for viral isolation success for every viral RNA load found at the time of diagnosis in 1,739 confirmed non-hospitalised COVID-19 cases. RESULTS: The distribution of quantification cycle values and estimated RNA loads for patients reporting to drive-through testing was skewed to high RNA loads. With the most sensitive RDT (Abbott and SD Biosensor), 97.30% (range: 88.65–99.77) of infectious individuals would be detected. This decreased to 92.73% (range: 60.30–99.77) for Coris BioConcept and GenBody, and 75.53% (range: 17.55–99.77) for RapiGEN. Only 32.9% of RT-PCR results were available on the same day as specimen collection. CONCLUSION: The most sensitive RDT detected infectious COVID-19 cases with high sensitivity and may considerably improve containment through more rapid isolation and contact tracing

    Transcriptomics of the Bed Bug (Cimex lectularius)

    Get PDF
    BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Design, synthesis, and evaluation of irreversible peptidyl inhibitors for clan CA and clan CD cysteine proteases

    Get PDF
    Cysteine proteases are a class of proteolytic enzymes, which are involved in a series of metabolic and catabolic processes, such as protein turnover, digestion, blood coagulation, apoptosis, fertilization and cell differentiation, and the immune response system. The development of novel potent and selective inhibitors for cysteine proteases has therefore gained increasing attention among medicinal chemists. In this thesis we have reported the design, synthesis, and evaluation of several peptidyl inhibitors for clan CA and clan CD cysteine proteases. We have continued the investigation of dipeptidyl vinyl sulfones as potent and selective inhibitors for dipeptidyl peptidase I (DPPI), a lysosomal cysteine protease, which is involved in the processing of intracellular proteases, such as granzymes. We have found that DPPI tolerates negatively charged amino acid residues in the P2 position with inhibition rates of 7,600 M-1s-1. Dipeptidyl vinyl sulfones with positively charged amino acid residues at the P1 position, however, do not inhibit DPPI at all. A second project focused on the epoxidation of the double bond of the vinyl sulfone moiety of the dipeptidyl vinyl sulfones. Instead of epoxidizing the double bond, we found that an isomerization had occurred. The newly formed compounds were determined to be allyl sulfones. We tested this new class of inhibitors with clan CA proteases and obtained inhibition rates of 560 M-1s-1 for Cbz-Leu-Phe-AS-Ph with calpain I. Two new classes of compounds for the clan CD protease S. mansoni legumain were designed, synthesized, and evaluated. Aza-peptidyl epoxides were found to be potent and selective inhibitors of S. mansoni legumain with IC50’s as low as 45 nM. Aza-peptide Michael acceptors were derived from the aza-peptide epoxide design and synthesized in an analogous fashion. The aza-peptide Michael acceptors inhibited S. mansoni legumain with even lower IC50’s, as low as 10 nM. However, the aza-peptide Michael acceptors react with thioalkylating agents contained in the buffer, such as DTT. The rates of degradation were determined spectroscopically, and half-lives of 3 to 20 minutes were measured. This observation gave us insights into the enzymatic mechanism and allowed us to determine the point of attack for the legumain active site cysteine thiol.Ph.D.Committee Chair: Dr. James C. Powers ; Committee Members: Dr. Donald Doyle, Dr. Nicholas Hud, Dr. Niren Murthy, and Dr. Suzanne Shuke

    First report of two complete Clostridium chauvoei genome sequences and detailed in silico genome analysis

    No full text
    Clostridium (C.) chauvoei is a Gram-positive, spore forming, anaerobic bacterium. It causes black leg in ruminants, a typically fatal histotoxic myonecrosis. High quality circular genome sequences were generated for the C. chauvoei type strain DSM 7528T (ATCC 10092T) and a field strain 12S0467 isolated in Germany. The origin of replication (oriC) was comparable to that of Bacillus subtilis in structure with two regions containing DnaA boxes. Similar prophages were identified in the genomes of both C. chauvoei strains which also harbored hemolysin and bacterial spore formation genes. A CRISPR type I-B system with limited variations in the repeat number was identified. Sporulation and germination process related genes were homologous to that of the Clostridia cluster I group but novel variations for regulatory genes were identified indicative for strain specific control of regulatory events. Phylogenomics showed a higher relatedness to C. septicum than to other so far sequenced genomes of species belonging to the genus Clostridium. Comparative genome analysis of three C. chauvoei circular genome sequences revealed the presence of few inversions and translocations in locally collinear blocks (LCBs). The species genome also shows a large number of genes involved in proteolysis, genes for glycosyl hydrolases and metal iron transportation genes which are presumably involved in virulence and survival in the host. Three conserved flagellar genes (fliC) were identified in each of the circular genomes. In conclusion this is the first comparative analysis of circular genomes for the species C. chauvoei, enabling insights into genome composition and virulence factor variation
    corecore