407 research outputs found

    Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site

    Get PDF
    The release of human immunodeficiency virus type 1 (HIV-1) and of other retroviruses from certain cells requires the presence of distinct regions in Gag that have been termed late assembly (L) domains. HIV-1 harbors a PTAP-type L domain in the p6 region of Gag that engages an endosomal budding machinery through Tsg101. In addition, an auxiliary L domain near the C terminus of p6 binds to ALIX/AIP1, which functions in the same endosomal sorting pathway as Tsg101. In the present study, we show that the profound release defect of HIV-1 L domain mutants can be completely rescued by increasing the cellular expression levels of ALIX and that this rescue depends on an intact ALIX binding site in p6. Furthermore, the ability of ALIX to rescue viral budding in this system depended on two putative surface-exposed hydrophobic patches on its N-terminal Bro1 domain. One of these patches mediates the interaction between ALIX and the ESCRT-III component CHMP4B, and mutations which disrupt the interaction also abolish the activity of ALIX in viral budding. The ability of ALIX to rescue a PTAP mutant also depends on its C-terminal proline-rich domain (PRD), but not on the binding sites for Tsg101, endophilin, CIN85, or for the newly identified binding partner, CMS, within the PRD. Our data establish that ALIX can have a dramatic effect on HIV-1 release and suggest that the ability to use ALIX may allow HIV-1 to replicate in cells that express only low levels of Tsg101

    A Long Cytoplasmic Loop Governs the Sensitivity of the Anti-viral Host Protein SERINC5 to HIV-1 Nef

    Get PDF
    We recently identified the multipass transmembrane protein SERINC5 as an antiviral protein that can potently inhibit HIV-1 infectivity and is counteracted by HIV-1 Nef. We now report that the anti-HIV-1 activity, but not the sensitivity to Nef, is conserved among vertebrate SERINC5 proteins. However, a Nef-resistant SERINC5 became Nef sensitive when its intracellular loop 4 (ICL4) was replaced by that of Nef-sensitive human SERINC5. Conversely, human SERINC5 became resistant to Nef when its ICL4 was replaced by that of a Nef-resistant SERINC5. In general, ICL4 regions from SERINCs that exhibited resistance to a given Nef conferred resistance to the same Nef when transferred to a sensitive SERINC, and vice versa. Our results establish that human SERINC5 can be modified to restrict HIV-1 infectivity even in the presence of Nef

    Potent Enhancement of HIV-1 Replication by Nef in the Absence of SERINC3 and SERINC5

    Get PDF
    It has recently emerged that HIV-1 Nef counteracts the antiviral host proteins SERINC3 and SERINC5. In particular, SERINC5 inhibits the infectivity of progeny virions when incorporated. SERINC3 and SERINC5 are also counteracted by the unrelated murine leukemia virus glycosylated Gag (glycoGag) protein, which possesses a potent Nef-like activity on HIV-1 infectivity. We now report that a minimal glycoGag termed glycoMA can fully substitute for Nef in promoting HIV-1 replication in Jurkat T lymphoid cells, indicating that Nef enhances replication in these cells mainly by counteracting SERINCs. In contrast, the SERINC antagonist glycoMA was unable to substitute for Nef in MOLT-3 T lymphoid cells, in which HIV-1 replication was highly dependent on Nef, and remained so even in the absence of SERINC3 and SERINC5. As in MOLT-3 cells, glycoMA was unable to substitute for Nef in stimulating HIV-1 replication in primary human cells. Although the ability of Nef mutants to promote HIV-1 replication in MOLT-3 cells correlated with the ability to engage endocytic machinery and to downregulate CD4, Nef nevertheless rescued virus replication under conditions where CD4 downregulation did not occur. Taken together, our observations raise the possibility that Nef triggers the endocytosis of a novel antiviral factor that is active against both laboratory-adapted and primary HIV-1 strains. IMPORTANCE The Nef protein of HIV-1 and the unrelated glycoGag protein of a murine leukemia virus similarly prevent the uptake of antiviral host proteins called SERINC3 and SERINC5 into HIV-1 particles, which enhances their infectiousness. We now show that although both SERINC antagonists can in principle similarly enhance HIV-1 replication, glycoGag is unable to substitute for Nef in primary human cells and in a T cell line called MOLT-3. In MOLT-3 cells, Nef remained crucial for HIV-1 replication even in the absence of SERINC3 and SERINC5. The pronounced effect of Nef on HIV-1 spreading in MOLT-3 cells correlated with the ability of Nef to engage cellular endocytic machinery and to downregulate the HIV-1 receptor CD4 but nevertheless persisted in the absence of CD4 downregulation. Collectively, our results provide evidence for a potent novel restriction activity that affects even relatively SERINC-resistant HIV-1 isolates and is counteracted by Nef

    A facile quantitative assay for viral particle genesis reveals cooperativity in virion assembly and saturation of an antiviral protein

    Get PDF
    Conventional assays of viral particle assembly and release are time consuming and laborious. We have developed an enzymatic virus-like particle (VLP) genesis assay that rapid and quantitative and is also versatile and applicable to diverse viruses including HIV-1 and Ebola virus. Using this assay, which has a dynamic range of several orders of magnitude, we show that the efficiency of VLP assembly and release, i.e., the fraction of the expressed protein that is assembled into extracellular particles, is dependent on the absolute level of expression of either HIV-1 Gag or Ebola virus VP40. We also demonstrate that the activity of the antiviral factor tetherin is dependent on the level of HIV-1 Gag expression and the numbers of VLPs generated, and appears to become saturated as these parameters are increased

    Potent Nonnucleoside Reverse Transcriptase Inhibitors Target HIV-1 Gag-Pol

    Get PDF
    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation

    Higher-Order Oligomerization Targets Plasma Membrane Proteins and HIV Gag to Exosomes

    Get PDF
    Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as away from the cytoplasm) from endosome membranes or endosome-like domains of plasma membrane. Here we describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-order oligomerization (the oligomerization of oligomers) and plasma membrane association, acts on proteins seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears to operate independently of class E vacuolar protein-sorting (VPS) function. We also show that higher-order oligomerization is sufficient to target plasma membrane proteins to HIV virus–like particles, that diverse Gag proteins possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis

    Establishment of a Functional Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcription Complex Involves the Cytoskeleton

    Get PDF
    After interaction of human immunodeficiency virus type 1 (HIV-1) virions with cell surface receptors, a series of poorly characterized events results in establishment of a viral reverse transcription complex in the host cell cytoplasm. This process is coordinated in such a way that reverse transcription is initiated shortly after formation of the viral reverse transcription complex. However, the mechanism through which virus entry and initiation of reverse transcription are coordinated and how these events are compartmentalized in the infected cell are not known. In this study, we demonstrate that viral reverse transcription complexes associate rapidly with the host cell cytoskeleton during HIV-1 infection and that reverse transcription occurs almost entirely in the cytoskeletal compartment. Interruption of actin polymerization before virus infection reduced association of viral reverse transcription complexes with the cytoskeleton. In addition, efficient reverse transcription was dependent on intact actin microfilaments. The localization of reverse transcription to actin microfilaments was mediated by the interaction of a reverse transcription complex component (gag MA) with actin but not vimentin (intermediate filaments) or tubulin (microtubules). In addition, fusion, but not endocytosis-mediated HIV-1 infectivity, was impaired when actin depolymerizing agents were added to target cells before infection but not when added after infection. These results point to a previously unsuspected role for the host cell cytoskeleton in HIV-1 entry and suggest that components of the cytoskeleton promote establishment of the reverse transcription complex in the host cell and also the process of reverse transcription within this complex

    EpCAM (CD326) finding its role in cancer

    Get PDF
    Although epithelial cell adhesion/activating molecule (EpCAM/CD326) is one of the first tumour-associated antigens identified, it has never received the same level of attention as other target proteins for therapy of cancer. It is also striking that ever since its discovery in the late 1970s the actual contribution of EpCAM to carcinogenesis remained unexplored until very recently. With a First International Symposium on EpCAM Biology and Clinical Application this is now changing. Key topics discussed at the meeting were the frequency and level of EpCAM expression on various cancers and its prognostic potential, the role of EpCAM as an oncogenic signalling molecule for cancer cells, recent progress on EpCAM-directed immunotherapeutic approaches in clinical development and the interaction of EpCAM with other proteins, which may provide a basis for a therapeutic window and repression of its growth-promoting signalling in carcinoma. Future research on EpCAM may benefit from a unified nomenclature and more frequent exchange among those who have been working on this cancer target during the past 30 years and will do so in the future

    Immunoelectron Microscopic Evidence for Tetherin/BST2 as the Physical Bridge between HIV-1 Virions and the Plasma Membrane

    Get PDF
    Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence
    • …
    corecore