2,725 research outputs found

    Velocity Dispersion of 335 Galaxy Clusters Selected from the Sloan Digital Sky Survey: Statistical Evidence for Dynamical Interaction, and Against Ram-Pressure Stripping

    Full text link
    There has been plenty of observational evidence of cluster galaxy evolution. However, it has been difficult to identify the origin of the cluster galaxy evolution. Here we show that gravitational interaction/friction between galaxies is the statistically dominant physical mechanism responsible for the cluster galaxy evolution, and that the well-favored ram-pressure stripping by the cluster gas is not statistically driving the cluster galaxy evolution. We have constructed the largest composite cluster with 14548 member galaxies out of 335 clusters with ~>300 km/s carefully selected from the SDSS. By measuring velocity dispersions of various subsamples of galaxies in this composite cluster, we found that bright cluster galaxies (Mz<-23) have significantly smaller velocity dispersion than faint galaxies (Mz>-23). We interpret this as direct evidence of the dynamical interaction/friction between cluster galaxies, where massive galaxies lose their velocity through the energy equipartition during the dynamical interaction/friction with less massive galaxies. We also found that star-forming late-type galaxies have a larger velocity dispersion than passive late-type galaxies. This is inconsistent with the ram-pressure stripping model; since the ram-pressure is proportional to sigma v^2 (i.e., stronger for galaxies with high velocity), the ram-pressure stripping cannot explain the observed trends of passive (evolved) galaxies having low velocity rather than high velocity. On the other hand, the result is again consistent with the dynamical galaxy-galaxy interaction/friction, where more evolved (passive) galaxies lose their velocity through dynamical interaction/friction.Comment: MNRAS in pres

    「ストリートファイター」は武道か? : ヴァーチャル・ニンジャ理論、イデオロギー、ファイティングゲーム・プレーヤーの意図的な自己変容

    Get PDF
    This experimental article explores the question of whether it is possible to examine the experience of playing fighting games (video games) as a form of self-cultivation or practice and, in so doing, whether it becomes possible to shift the debate about the potential impact of violent video games on the people who play them (and on society around them). The article draws on five years of surveys and interviews with gamers from around the world, but seeks to interpret this data through a critical and creative reading of the games themselves as well as a reading of the so-called bushidō tradition (of texts about the intersection between Zen and the martial arts). The article concludes that fighting games might be experienced as forms of martial arts in themselves, complete with potentials for self-transformation, but that this form of engagement requires appropriate intentionality from players, which provokes a space for a manifesto to guide players’ intentions

    From the Dragon to the Beast: The Martial Monk and Virtual Ninja as Actual Martial Artists

    Get PDF
    Navigating between society’s moral panics about the influence of violent videogames and philosophical texts about selfcultivation in the martial arts, this extract from the monograph, The Virtual Ninja Manifesto: Fighting Games, Martial Arts, and Gamic Orientalism, asks whether the figure of the ‘virtual ninja’ can emerge as an aspirational figure in the twenty-first century, modeled on the 'event' of Bruce Lee. The work seeks to illustrate the argument that the kind of training required to master videogames approximates the kind of training described in Zen literature on the martial arts. It suggests that the shift from the actual dōjō to a digital dōjō represents only a change in the technological means of practice. It explores the possibility that, after Bruce Lee and Daigo Umehara, martial arts games can promote spiritual development

    Near-infrared spectroscopy of EX Lupi in outburst

    Full text link
    EX Lup is the prototype of the EXor class of young eruptive stars: objects showing repetitive brightenings due to increased accretion from the circumstellar disk to the star. In this paper, we report on medium-resolution near-infrared spectroscopy of EX\,Lup taken during its extreme outburst in 2008, as well as numerical modeling with the aim of determining the physical conditions around the star. We detect emission lines from atomic hydrogen, helium, and metals, as well as first overtone bandhead emission from carbon monoxide. Our results indicate that the emission lines are originating from gas located in a dust-free region within ~ 0.2 AU of the star. The profile of the CO bandhead indicates that the CO gas has a temperature of 2500 K, and is located in the inner edge of the disk or in the outer parts of funnel flows. The atomic metals are probably co-located with the CO. Some metallic lines are fluorescently excited, suggesting direct exposure to ultraviolet photons. The Brackett series indicates emission from hot (10000 K) and optically thin gas. The hydrogen lines display a strong spectro-astrometric signal, suggesting that the hydrogen emission is probably not coming from an equatorial boundary layer; a funnel flow or disk wind origin is more likely. This picture is broadly consistent with the standard magnetospheric accretion model usually assumed for normally accreting T Tauri stars. Our results also set constraints on the eruption mechanism, supporting a model where material piles up around the corotation radius and episodically falls onto the star.Comment: 12 pages, 8 figures, 1 table, accepted for publication in Ap

    Seyfert's Sextet: where is the gas?

    Full text link
    Seyfert's Sextet (a.k.a HCG 79) is one of the most compact and isolated galaxy groups in the local Universe. It shows a prominent diffuse light component that accounts for ~50% of the total observed light. This likely indicates that the group is in an advanced evolutionary phase, which would predict a significant hot gaseous component. Previous X-ray observations had suggested a low luminosity for this system, but with large uncertainties and poor resolution. We present the results from a deep (70 ks), high resolution Chandra observation of Seyfert's Sextet, requested with the aim of separating the X-ray emission associated with the individual galaxies from that of a more extended inter-galactic component. We discuss the spatial and spectral characteristics of this group we derive with those of a few similar systems also studied in the X-ray band. The high resolution X-ray image indicates that the majority of the detected emission does not arise in the compact group but is concentrated towards the NW and corresponds to what appears to be a background galaxy cluster. The emission from the group alone has a total luminosity of ~1x10^40 erg/s in the (0.5-5) keV band. Most of the luminosity can be attributed to the individual sources in the galaxies, and only ~2x10^39 erg/s is due to a gaseous component. However, we find that this component is also mostly associated with the individual galaxies of the Sextet, leaving little or no residual in a truly IGM component. The extremely low luminosity of the diffuse emission in Seyfert's Sextet might be related to its small total mass.Comment: 8 pages, 7 figures. Accepted on A&

    Optical spectroscopy of EX Lupi during quiescence and outburst: Infall, wind, and dynamics in the accretion flow

    Full text link
    We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 1012^{12}cm3^{-3} in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.Comment: 15 pages plus 26 pages online material, accepted by A&

    The origin of redshift asymmetries: How LambdaCDM explains anomalous redshift

    Full text link
    Several authors have found a statistically significant excess of galaxies with higher redshifts relative to the group centre, so-called discordant redshifts, in particular in groups where the brightest galaxy, identified in apparent magnitudes, is a spiral. Our aim is to explain the observed redshift excess. We use a semi-analytical galaxy catalogue constructed from the Millennium Simulation to study redshift asymmetries in spiral-dominated groups in the Lambda cold dark matter (LambdaCDM) cosmology. We show that discordant redshifts in small galaxy groups arise when these groups are gravitationally unbound and the dominant galaxy of the group is misidentified. The redshift excess is especially significant when the apparently brightest galaxy can be identified as a spiral, in full agreement with observations. On the other hand, the groups that are gravitationally bound do not show a significant redshift asymmetry. When the dominant members of groups in mock catalogues are identified by using the absolute B-band magnitudes, our results show a small blueshift excess. This result is due to the magnitude limited observations that miss the faint background galaxies in groups. When the group centre is not correctly identified it may cause the major part of the observed redshift excess. If the group is also gravitationally unbound, the level of the redshift excess becomes as high as in observations. There is no need to introduce any "anomalous" redshift mechanism to explain the observed redshift excess. Further, as the Friends-of-Friends percolation algorithm picks out the expanding parts of groups, in addition to the gravitationally bound group cores, group catalogues constructed in this way cannot be used as if the groups are purely bound systems.Comment: Accepted for publication in A&

    Near-Infrared and Optical Luminosity Functions from the 6dF Galaxy Survey

    Full text link
    Luminosity functions and their integrated luminosity densities are presented for the 6dF Galaxy Survey (6dFGS). This ongoing survey ultimately aims to measure around 150,000 redshifts and 15,000 peculiar velocities over almost the entire southern sky at |b|>10 deg. The main target samples are taken from the 2MASS Extended Source Catalog and the SuperCOSMOS Sky Survey catalogue, and comprise 138,226 galaxies complete to (K, H, J, rF, bJ) = (12.75, 13.00, 13.75, 15.60, 16.75). These samples are comparable in size to the optically-selected Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey samples, and improve on recent near-infrared-selected redshift surveys by more than an order of magnitude in both number and sky coverage. The partial samples used in this paper contain a little over half of the total sample in each band and are ~90 percent complete. Luminosity distributions are derived using the 1/Vmax, STY and SWML estimators, and probe 1 to 2 absolute magnitudes fainter in the near-infrared than previous surveys. The effects of magnitude errors, redshift incompleteness and peculiar velocities have been taken into account and corrected throughout. Generally, the 6dFGS luminosity functions are in excellent agreement with those of similarly-sized surveys. Our data are of sufficient quality to demonstrate that a Schechter function is not an ideal fit to the true luminosity distribution, due to its inability to simultaneously match the faint end slope and rapid bright end decline. Integrated luminosity densities from the 6dFGS are consistent with an old stellar population and moderately declining star formation rate.Comment: 20 pages, 15 figures. MNRAS published. Replaces earlier version carrying a typo in Table 6. High resolution versions of the figures can be obtained from http://www.aao.gov.au/local/www/6df/Publication

    The Galaxy Population of Low-Redshift Abell Clusters

    Full text link
    We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentric radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r200 to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (Bgc), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The fb is found not to correlate with Bgc; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy fb is approximately constant with clustercentric radius except for the inner cluster core region where fb decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction, indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.Comment: 28 pages, 6 figures, accepted for publication in Ap
    corecore