280 research outputs found

    Characterizing the Neurobiological Mechanisms of Action of Exercise and Cognitive–Behavioral Interventions for Rheumatoid Arthritis Fatigue : a magnetic resonance imaging brain study

    Get PDF
    Open Access via the Wiley/JISC agreement Acknowledgements We would like to thank all the investigators from the original LIFT study, including Kathryn Martin, Lorna Aucott, Neeraj Dhaun, Emma Dures, Stuart R. Gray, Elizabeth Kidd, Vinod Kumar, Karina Lovell, Graeme MacLennan, Paul McNamee, John Norrie, Lorna Paul, Jon Packham, Stefan Siebert, Alison Wearden, and Gary Macfarlane, without whose work this research would not be possible. Furthermore, we thank all the participants who generously supported the LIFT trial. We also acknowledge the contribution of the Trial Steering Committee and Data Monitoring Committee, and Brian Taylor and Mark Forrest (Centre for Healthcare Randomised Trials [CHaRT], University of Aberdeen, Aberdeen, UK) for their technical assistance Funding This study was funded by the Chief Scientist Office (TCS/17/14) and Versus Arthritis (22092).Peer reviewe

    Characterising the neurobiological mechanisms of action of exercise and cognitive behavioural interventions for rheumatoid arthritis fatigue: an MRI brain study

    Get PDF
    Objective: Chronic fatigue is a major clinical unmet need among patients with rheumatoid arthritis (RA). Current therapies are limited to nonpharmacological interventions, such as personalized exercise programs (PEPs) and cognitive–behavioral approaches (CBAs); however, most patients still continue to report severe fatigue. To inform more effective therapies, we conducted a magnetic resonance imaging (MRI) brain study of PEPs and CBAs, nested within a randomized controlled trial (RCT), to identify their neurobiological mechanisms of fatigue reduction in RA. Methods: A subgroup of patients with RA (n = 90), participating in an RCT of PEPs and CBAs for fatigue, undertook a multimodal MRI brain scan following randomization to either usual care (UC) alone or in addition to PEPs and CBAs and again after the intervention (six months). Brain regional volumetric, functional, and structural connectivity indices were curated and then computed employing a causal analysis framework. The primary outcome was fatigue improvement (Chalder fatigue scale). Results: Several structural and functional connections were identified as mediators of fatigue improvement in both PEPs and CBAs compared to UC. PEPs had a more pronounced effect on functional connectivity than CBAs; however, structural connectivity between the left isthmus cingulate cortex (L-ICC) and left paracentral lobule (L-PCL) was shared, and the size of mediation effect ranked highly for both PEPs and CBAs (ßAverage = −0.46, SD 0.61; ßAverage = −0.32, SD 0.47, respectively). Conclusion: The structural connection between the L-ICC and L-PCL appears to be a dominant mechanism for how both PEPs and CBAs reduce fatigue among patients with RA. This supports its potential as a substrate of fatigue neurobiology and a putative candidate for future targeting

    Use of folding modulators to improve heterologous protein production in Escherichia coli

    Get PDF
    Despite the fundamental importance of E. coli in the manufacture of a wide range of biotechnological and biomedical products, extensive process and/or target optimisation is routinely required in order to achieve functional yields in excess of low mg/l levels. Molecular chaperones and folding catalysts appear to present a panacea for problems of heterologous protein folding in the organism, due largely to their broad substrate range compared with, e.g., protein-specific mutagenesis approaches. Painstaking investigation of chaperone overproduction has, however, met with mixed – and largely unpredictable – results to date. The past 5 years have nevertheless seen an explosion in interest in exploiting the native folding modulators of E. coli, and particularly cocktails thereof, driven largely by the availability of plasmid systems that facilitate simultaneous, non-rational screening of multiple chaperones during recombinant protein expression. As interest in using E. coli to produce recombinant membrane proteins and even glycoproteins grows, approaches to reduce aggregation, delay host cell lysis and optimise expression of difficult-to-express recombinant proteins will become even more critical over the coming years. In this review, we critically evaluate the performance of molecular chaperones and folding catalysts native to E. coli in improving functional production of heterologous proteins in the bacterium and we discuss how they might best be exploited to provide increased amounts of correctly-folded, active protein for biochemical and biophysical studies

    Biomechanics and energetics of walking on uneven terrain

    Get PDF
    Walking on uneven terrain is more energetically costly than walking on smooth ground, but the biomechanical factors that contribute to this increase are unknown. To identify possible factors, we constructed an uneven terrain treadmill that allowed us to record biomechanical, electromyographic and metabolic energetics data from human subjects. We hypothesized that walking on uneven terrain would increase step width and length variability, joint mechanical work and muscle co-activation compared with walking on smooth terrain. We tested healthy subjects (N=11) walking at 1.0 m s−1, and found that, when walking on uneven terrain with up to 2.5 cm variation, subjects decreased their step length by 4% and did not significantly change their step width, while both step length and width variability increased significantly (22 and 36%, respectively; P<0.05). Uneven terrain walking caused a 28 and 62% increase in positive knee and hip work, respectively, and a 26% greater magnitude of negative knee work (0.0106, 0.1078 and 0.0425 J kg−1, respectively; P<0.05). Mean muscle activity increased in seven muscles in the lower leg and thigh (P<0.05). These changes caused overall net metabolic energy expenditure to increase by 0.73 W kg−1 (28%; P<0.0001). Much of that increase could be explained by the increased mechanical work observed at the knee and hip. Greater muscle co-activation could also contribute to increased energetic cost but to unknown degree. The findings provide insight into how lower limb muscles are used differently for natural terrain compared with laboratory conditions

    Hair glucocorticoids are associated with childhood adversity, depressive symptoms and reduced global and lobar grey matter in Generation Scotland

    Get PDF
    ACKNOWLEDGEMENTS We would like to thank all of the Generation Scotland participants for their contribution to this study. We also thank the research assistants, clinicians and technicians for their help in collecting the data. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently supported by the Wellcome Trust [216767/Z/19/Z]. This study was also supported and funded by the Wellcome Trust Strategic Award ‘Stratifying Resilience and Depression Longitudinally’ (STRADL) (Reference 104036/Z/14/Z). We acknowledge the support of the British Heart Foundation (RE/18/5/34216). CG is supported by the Medical Research Council and the University of Edinburgh through the Precision Medicine Doctoral Training Programme. MCB is supported by a Guarantors of Brain Non-Clinical Post-Doctoral Fellowship. JMW is funded by the UK Dementia Research Institute which is funded by the UK Medical Research Council, Alzheimer’s Research UK and Alzheimer’s SocietyPeer reviewedPublisher PD

    Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder

    Get PDF
    Funding Information: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006] and is currently supported by the Wellcome Trust [216767/Z/19/Z]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and Depression Longitudinally” (STRADL) Reference 104036/Z/14/Z). CG is supported by The Medical Research Council and The University of Edinburgh through the Precision Medicine Doctoral Training program. SRC is supported by the UK Medical Research Council [MR/R024065/1] and a National Institutes of Health (NIH) research grant R01AG054628. Acknowledgements The authors thank all of the STRADL and Generation Scotland participants for their time and effort taking part in this study. We would also like to thank all of the research assistants, clinicians and technicians for their help in the collecting this data.Peer reviewedPublisher PD

    How does study quality affect the results of a diagnostic meta-analysis?

    Get PDF
    Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited

    Cell Lineages and the Logic of Proliferative Control

    Get PDF
    It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors (“chalones”) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character

    A reporting format for leaf-level gas exchange data and metadata

    Get PDF
    Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy's ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system
    corecore