28 research outputs found

    Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells

    Get PDF
    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed

    Las nuevas formas de comunicacion a traves de Internet

    No full text

    Study of Antispasmodic and Antidiarrheal Activities of Tagetes lucida (Mexican Tarragon) in Experimental Models and Its Mechanism of Action

    No full text
    Tagetes lucida has been used in traditional medicine as a remedy to alleviate several gastrointestinal disorders that provoke stomachaches, abdominal cramps, and diarrhea. However, there is not enough scientific evidence that supports these effects. Therefore, the purpose of this study was to evaluate antispasmodic and antidiarrheal activities of aqueous extract of T. lucida (AqExt-TL) as well as its mechanism of action in experimental models. Antispasmodic activity and the mechanism of action of AqExt-TL were assessed on segments of the guinea pig ileum precontracted with KCl, acetylcholine (ACh), or electrical field stimulation (EFS). Furthermore, the antispasmodic effect of two coumarins (umbelliferone and herniarin) previously identified in this species was evaluated. Antidiarrheal activity of AqExt-TL was determined using the charcoal meal test in mice. AqExt-TL showed antispasmodic activity in segments of the guinea pig ileum precontracted with KCl (83.7 ± 1.9%) and ACh (77.2 ± 5.3%) at the maximal concentration; however, practically, it did not alter the contractions induced by EFS (10.1 ± 2.2%). Antispasmodic activity of AqExt-TL was not significantly altered by hexamethonium (a ganglionic blocker) or L-NAME (an inhibitor of nitric oxide synthase). However, this extract decreased the maximal contractile response to calcium (82.7 ± 8.5%), serotonin (68.1 ± 8.5%), and histamine (63.9 ± 5.9%) in their concentration-response curves. Umbelliferone and herniarin also induced an antispasmodic effect on tissues precontracted with KCl. In addition, low doses of AqExt-TL reduced to 50% the distance traveled by charcoal meal in the gastrointestinal transit model in mice as loperamide, an antidiarrheal agent, did. These results provided evidence of the antispasmodic and antidiarrheal activity of T. lucida, which supports its use in the folk medicine in relieving symptoms in some gastrointestinal disorders. In the antispasmodic effect, the blockade of histaminergic and serotoninergic pathway as well as the calcium channels seems to be involved. Finally, umbelliferone and herniarin could be partially responsible for the antispasmodic activity induced by T. lucida
    corecore