128 research outputs found

    Environmental Fatigue Analysis of nuclear components within the framework of INCEFA-SCALE project

    Get PDF
    ABSTRACT: INCEFA-SCALE started in October 2020. The objective of this project is to improve the capacity to predict the lifetime of Nuclear Power Plant (NPP) components subjected to environmental assisted fatigue. The project starts off by analysing the existing data and then provides new environmentally assisted fatigue data which allow the laboratory test outcomes to be applied to components with real geometries and loads. So far, the data mining of different finished projects (INCEFA-PLUS, USNRC, EPRI, MHI and AdFaM) has been carried out, and test conditions for filling the knowledge gaps have been established. Moreover, the test matrix for 2022 has been defined. In this first phase, tests are focused on producing reference data, analysing complex waveforms (variable amplitude) and the effect of the surface finish. The next testing phases will focus on particular conditions: multi-axial tests, notches, stress/strain gradient effect and size effect. Furthermore, the microstructural analysis of common materials and a guideline for fatigue striation measurement on the fracture surface have been developed. This article provides an update on the project status and the advances made in data analysis, mechanical understanding and testing conditionsThis project has received funding from the Euratom research and training program 2019-2020 under grant agreement No 945300. The contributions of all partners in the INCEFA-SCALE project are also acknowledge

    Advancing sustainability education in business studies through digital service learning

    Get PDF
    To support the development of a society that is attuned to the challenges presented by sustainable development, it is vital that higher education business students understand the value of sustainability, and act in a way that is consistent with these values. This paper explores a sustainability-focused experiential learning activity through investigating the utility of an emerging form of service learning in the digital space for developing global citizens. The paper presents an international case study of educators who employed digital service learning in various business education contexts. The research reports on the perceptions of higher education students in relation to their awareness, critical thinking and action for sustainability. The paper has practical contributions in identifying an opportunity for implementing sustainability curriculum into higher education for business

    The Operator Product Expansion of N=4 SYM and the 4-point Functions of Supergravity

    Get PDF
    We give a detailed Operator Product Expansion interpretation of the results for conformal 4-point functions computed from supergravity through the AdS/CFT duality. We show that for an arbitrary scalar exchange in AdS(d+1) all the power-singular terms in the direct channel limit (and only these terms) exactly match the corresponding contributions to the OPE of the operator dual to the exchanged bulk field and of its conformal descendents. The leading logarithmic singularities in the 4-point functions of protected N=4 super-Yang Mills operators (computed from IIB supergravity on AdS(5) X S(5) are interpreted as O(1/N^2) renormalization effects of the double-trace products appearing in the OPE. Applied to the 4-point functions of the operators Ophi ~ tr F^2 + ... and Oc ~ tr FF~ + ..., this analysis leads to the prediction that the double-trace composites [Ophi Oc] and [Ophi Ophi - Oc Oc] have anomalous dimension -16/N^2 in the large N, large g_{YM}^2 N limit. We describe a geometric picture of the OPE in the dual gravitational theory, for both the power-singular terms and the leading logarithms. We comment on several possible extensions of our results.Comment: 42 page

    Chiral edge waves in a dance-based human topological insulator

    Full text link
    Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, topologically protected boundary transport has since been observed in many other physical systems. Thus, it is natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirectional flow of movement through dancers on the lattice edge. This effect persists when people are removed from the dance floor. Our work extends the applicability of wave physics to the performance arts

    The Dwarf Galaxy Population at z ∼ 0.7: A Catalog of Emission Lines and Redshifts from Deep Keck Observations

    Get PDF
    We present a catalog of spectroscopically measured redshifts over 0<z<20 < z < 2 and emission line fluxes for 1440 galaxies. The majority (\sim65\%) of the galaxies come from the HALO7D survey, with the remainder from the DEEPwinds program. This catalog includes redshifts for 646 dwarf galaxies with log(M/M)<9.5\log(M_{\star}/M_{\odot}) < 9.5. 810 catalog galaxies did not have previously published spectroscopic redshifts, including 454 dwarf galaxies. HALO7D used the DEIMOS spectrograph on the Keck II telescope to take very deep (up to 32 hours exposure, with a median of \sim7 hours) optical spectroscopy in the COSMOS, EGS, GOODS-North, and GOODS-South CANDELS fields, and in some areas outside CANDELS. We compare our redshift results to existing spectroscopic and photometric redshifts in these fields, finding only a 1\% rate of discrepancy with other spectroscopic redshifts. We measure a small increase in median photometric redshift error (from 1.0\% to 1.3\%) and catastrophic outlier rate (from 3.5\% to 8\%) with decreasing stellar mass. We obtained successful redshift fits for 75\% of massive galaxies, and demonstrate a similar 70-75\% successful redshift measurement rate in 8.5<log(M/M)<9.58.5 < \log(M_{\star}/M_{\odot}) < 9.5 galaxies, suggesting similar survey sensitivity in this low-mass range. We describe the redshift, mass, and color-magnitude distributions of the catalog galaxies, finding HALO7D galaxies representative of CANDELS galaxies up to \textit{i}-band magnitudes of 25. The catalogs presented will enable studies of star formation (SF), the mass-metallicity relation, SF-morphology relations, and other properties of the z0.7z\sim0.7 dwarf galaxy population.Comment: 23 pages, 19 Figures, updated to version accepted by ApJ

    An exploration of student learning for sustainability through the WikiRate student engagement project

    Get PDF
    The launch of the UN Global Compact\u27s Principles for Responsible Management Education (PRME1) in 2007 can be seen as a widespread acknowledgement that students of business and management need a form of education that enables them to make a positive contribution to both business and society. PRME\u27s aim of realising the United Nations\u27 Sustainable Development Goals (SDGs) through responsible management education is built on six guiding Principles, designed to encourage business schools and universities to recognise their role as change agents and champions of sustainable development. Consequently over 700 signatories to PRME have committed to adapt their institutional strategies, curricula, research agendas, and external engagement activities to develop the capabilities of students to be future generators of sustainable value for business and society at large and to work for an inclusive and sustainable global economy (PRME, Principle 12)

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    The first 20 months of the COVID-19 pandemic: Mortality, intubation and ICU rates among 104,590 patients hospitalized at 21 United States health systems

    Get PDF
    Main objective There is limited information on how patient outcomes have changed during the COVID-19 pandemic. This study characterizes changes in mortality, intubation, and ICU admission rates during the first 20 months of the pandemic. Study design and methods University of Wisconsin researchers collected and harmonized electronic health record data from 1.1 million COVID-19 patients across 21 United States health systems from February 2020 through September 2021. The analysis comprised data from 104,590 adult hospitalized COVID-19 patients. Inclusion criteria for the analysis were: (1) age 18 years or older; (2) COVID-19 ICD-10 diagnosis during hospitalization and/or a positive COVID-19 PCR test in a 14-day window (+/- 7 days of hospital admission); and (3) health system contact prior to COVID-19 hospitalization. Outcomes assessed were: (1) mortality (primary), (2) endotracheal intubation, and (3) ICU admission. Results and significance The 104,590 hospitalized participants had a mean age of 61.7 years and were 50.4% female, 24% Black, and 56.8% White. Overall risk-standardized mortality (adjusted for age, sex, race, ethnicity, body mass index, insurance status and medical comorbidities) declined from 16% of hospitalized COVID-19 patients (95% CI: 16% to 17%) early in the pandemic (February-April 2020) to 9% (CI: 9% to 10%) later (July-September 2021). Among subpopulations, males (vs. females), those on Medicare (vs. those on commercial insurance), the severely obese (vs. normal weight), and those aged 60 and older (vs. younger individuals) had especially high mortality rates both early and late in the pandemic. ICU admission and intubation rates also declined across these 20 months. Conclusions Mortality, intubation, and ICU admission rates improved markedly over the first 20 months of the pandemic among adult hospitalized COVID-19 patients although gains varied by subpopulation. These data provide important information on the course of COVID-19 and identify hospitalized patient groups at heightened risk for negative outcomes. Trial registration ClinicalTrials.gov Identifier: NCT04506528 (https://clinicaltrials.gov/ct2/show/NCT04506528)

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore