658 research outputs found
Primary Transgenic Bovine Cells and Their Rejuvenated Cloned Equivalents Show Transgene-Specific Epigenetic Differences
Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences
The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds
In this paper we present high-resolution hydrodynamical models of warm
ionized clouds embedded in a superwind, and compare the OVI and soft X-ray
properties to the existing observational data. These models include thermal
conduction, which we show plays an important role in shaping both the dynamics
and radiative properties of the resulting wind/cloud interaction. Heat
conduction stabilizes the cloud by inhibiting the growth of K-H and R-T
instabilities, and also generates a shock wave at the cloud's surface that
compresses the cloud. This dynamical behaviour influences the observable
properties. We find that while OVI emission and absorption always arises in
cloud material at the periphery of the cloud, most of the soft X-ray arises in
the region between the wind bow shock and the cloud surface, and probes either
wind or cloud material depending on the strength of conduction and the relative
abundances of the wind with respect to the cloud. In general only a small
fraction (<1%) of the wind mechanical energy intersecting a cloud is radiated
away at UV and X-ray wavelengths, with more wind energy going into accelerating
the cloud. Models with heat conduction at Spitzer-levels are found to produce
observational properties closer to those observed in superwinds than models
with no thermal conduction, in particular in terms of the OVI-to-X-ray
luminosity ratio, but cloud life times are uncomfortably short (<1Myr) compared
to the dynamical ages of real winds. We experimented with reducing the thermal
conductivity and found that even when we reduced conduction by a factor of 25
that the simulations retained the beneficial hydrodynamical stability and low
O{\sc vi}-to-X-ray luminosity ratio found in the Spitzer-level conductive
models, while also having reduced evaporation rates.Comment: 27 pages, 12 figures (4 in color), MNRAS accepte
Black Hole Mass, Host galaxy classification and AGN activity
We investigate the role of host galaxy classification and black hole mass in
a heterogeneous sample of 276 mostly nearby (z<0.1) X-ray and IR selected AGN.
Around 90% of Seyfert 1 AGN in bulge-dominated host galaxies (without disk
contamination) span a very narrow range in the observed 12um to 2-10keV
luminosity ratio (1<R_{IR/X}<7). This narrow dispersion incorporates all
possible variations among AGN central engines, including accretion mechanism
and efficiency, disk opening angle, orientation to sightline, covering fraction
of absorbing material, patchiness of X-ray corona and measured variability. As
a result, all models of X-ray and IR production in AGN are very strongly
constrained. Among Seyfert 1 AGN, median X-ray and IR luminosities increase
with black hole mass at >99% confidence. Using ring morphology of the host
galaxy as a proxy for lack of tidal interaction, we find that AGN luminosity in
host galaxies within 70Mpc is independent of host galaxy interaction for
Gyrs, suggesting that the timescale of AGN activity due to secular evolution is
much shorter than that due to tidal interactions. We find that LINER hosts have
lower 12um luminosity than the median 12um luminosity of normal disk- and
bulge-dominated galaxies which may represent observational evidence for past
epochs of feedback that supressed star formation in LINER host galaxies. We
propose that nuclear ULXs may account for the X-ray emission from LINER 2s
without flat-spectrum, compact radio cores. We confirmed the robustness of our
results in X-rays by comparing them with the 14-195keV 22-month BAT survey of
AGN, which is all-sky and unbiased by photoelectric absorption.Comment: MNRAS accepted. 14 pages, 11 figures, complete Table 1 in online
journa
Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations
We study the effect of global and local dielectric variations on the polarization conversion rps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the rps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity
This article reviews some aspects in the current relationship between
mathematical and numerical General Relativity. Focus is placed on the
description of isolated systems, with a particular emphasis on recent
developments in the study of black holes. Ideas concerning asymptotic flatness,
the initial value problem, the constraint equations, evolution formalisms,
geometric inequalities and quasi-local black hole horizons are discussed on the
light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity.
Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24
November, 2006), part of the "General Relativity Trimester" at the Institut
Henri Poincare (Fall 2006). Comments and references added. Typos corrected.
Submitted to Classical and Quantum Gravit
- …