31 research outputs found

    Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture

    Get PDF
    Expression profiling of embryonic stem (ES) cell differentiation in the presence of serum has been performed previously. It remains unclear if transcriptional activation is dependent on complext growth factor mixtures in serum or whether this process is intrinsic to ES cells once the stem cell program has been inactivated. The aims of this study were to determine the transcriptional programs associated with the stem cell state and to characterize mesoderm differentiation between serum and serum-free culture

    PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    Get PDF
    BACKGROUND: Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. RESULTS: The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. CONCLUSION: Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% 10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% 5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million 6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million 2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million 1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million 67.7-90.8] DALYs or 55.5% 48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million 22.3-48.6] DALYs or 24.3% 15.7-33.2]), high fasting plasma glucose (28.9 million 19.8-41.5] DALYs or 20.2% 13.8-29.1]), ambient particulate matter pollution (28.7 million 23.4-33.4] DALYs or 20.1% 16.6-23.0]), and smoking (25.3 million 22.6-28.2] DALYs or 17.6% 16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries

    Transcriptional switching in macrophages associated with the peritoneal foreign body response

    No full text
    We previously demonstrated that myeloid cells are the source of fibrotic tissue induced by foreign material implanted in the peritoneal cavity. This study utilised the MacGreen mouse, in which the Csf1r promoter directs myeloid-specific enhanced green fluorescent protein (EGFP) expression, to determine the temporal gene expression profile of myeloid subpopulations recruited to the peritoneal cavity to encapsulate implanted foreign material (cubes of boiled egg white). Cells with high EGFP expression (EGFP) were purified from exudate and encapsulating tissue at different times during the foreign body response, gene expression profiles determined using cDNA microarrays, and data clustered using the network analysis tool, Biolayout Express. EGFP cells from all time points expressed high levels of Csf1r, Emr1 (encoding F4/80), Cd14 and Itgam (encoding Mac-1) providing internal validation of their myeloid nature. Exudate macrophages (days 4-7) expressed a large cluster of cell cycle genes; these were switched off in capsule cells. Early in capsule formation, Csf1r-EGFP cells expressed genes associated with tissue turnover, but later expressed both pro- and anti-inflammatory genes alongside a subset of mesenchyme-associated genes, a pattern of gene expression that adds weight to the concept of a continuum of macrophage phenotypes rather than distinct M1/M2 subsets. Moreover, rather than transdifferentiating to myofibroblasts, macrophages contributing to later stages of the peritoneal foreign body response warrant their own classification as 'fibroblastoid' macrophages

    Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture"</p><p>http://www.biomedcentral.com/1471-2164/8/365</p><p>BMC Genomics 2007;8():365-365.</p><p>Published online 10 Oct 2007</p><p>PMCID:PMC2204012.</p><p></p>nt of > 0.9). In sets 1–7, expression is higher in serum (black sets). In sets 8–9, expression is greater in serum-freeEB culture (red sets). Some sets have been named based on the similarity of overall gene function during differentiation pathways (see Table 3)

    Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture"</p><p>http://www.biomedcentral.com/1471-2164/8/365</p><p>BMC Genomics 2007;8():365-365.</p><p>Published online 10 Oct 2007</p><p>PMCID:PMC2204012.</p><p></p>rentiated ES cells (0, grey bar) and in EBs collected for up to 16 days in serum (white bars) or defined media (black bars) from the same starting ES cell populations. Bars represent the means of three (serum) or two (serum-free) biological replicates. The Y-axis represents a log scale normalized relative to the housekeeping gene HPRT. Error bars indicate standard deviation

    Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture-5

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeculture"</p><p>http://www.biomedcentral.com/1471-2164/8/365</p><p>BMC Genomics 2007;8():365-365.</p><p>Published online 10 Oct 2007</p><p>PMCID:PMC2204012.</p><p></p>2 and KLF4 with Oct4 in sub-nuclear compartments (possibly nucleoli). Individual confocal images for OCT4, KLF2, KLF4, and DAPI are shown with the corresponding composite image. Scale bar 40 μm. () Electro-mobility gel shift assay showing changes in DNA binding activities at a conserved CACC box site in the p18-INK4c gene promoter. Nuclear extracts were generated from ES cells or EBs differentiated for four days in serum. Super-shifts were performed with specific antisera for SP1, SP3, KLF2, KLF3, and KLF4 (See Methods). There is strong binding of endogenous Sp1 to the CACC element in ES cells and EB cells. KLF2 DNA-binding activity is present in ES cells as determined by a specific inhibition of binding of the indicated DNA complex with a KLF2 antibody. This activity is lost upon differentiation into EBs. The identity of the CACC box binding activity in EBs denoted CAC-X, and the binding activity in ES cells denoted CAC-Y, was not definitively identified using this panel of antibodies
    corecore