1,084 research outputs found

    Imaging Sources with Fast and Slow Emission Components

    Full text link
    We investigate two-proton correlation functions for reactions in which fast dynamical and slow evaporative proton emission are both present. In such cases, the width of the correlation peak provides the most reliable information about the source size of the fast dynamical component. The maximum of the correlation function is sensitive to the relative yields from the slow and fast emission components. Numerically inverting the correlation function allows one to accurately disentangle fast dynamical from slow evaporative emission and extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure

    On the deflection of asteroids with mirrors

    Get PDF
    This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid

    Centrality, rapidity, and transverse-momentum dependence of gluon shadowing and antishadowing on J/ψJ/\psi production in ddAu collisions at s\sqrt{s}=200 GeV

    Full text link
    We have carried out a wide study of shadowing and antishadowing effects on \jpsi\ production in \dAu\ collisions at sNN=200\sqrt{s_{NN}}=200 GeV. We have studied the effects of three different gluon nPDF sets, using the exact kinematics for a 2→22\to 2 process, namely g+g→J/ψ+gg+g\to J/\psi+g as expected from LO pQCD. We have computed the rapidity dependence of \RCP\ and RdAuR_{d\rm Au} for the different centrality classes of the PHENIX data. For mid rapidities, we have also computed the transverse-momentum dependence of the nuclear modification factor, which cannot be predicted with the usual 2→12\to 1 simplified kinematics. All these observables have been compared to the PHENIX data in \dAu\ collisions.Comment: 10 pages, 11 figures, talk given by N. Matagne at the conference "thirty years of hadronic physics", Spa, Belgium, April 6-8, 2011, to appear in Few Body System

    Spin, charge and orbital ordering in ferrimagnetic insulator YBaMn2_2O5_5

    Full text link
    The oxygen-deficient (double) perovskite YBaMn2_2O5_5, containing corner-linked MnO5_5 square pyramids, is found to exhibit ferrimagnetic ordering in its ground state. In the present work we report generalized-gradient-corrected, relativistic first-principles full-potential density-functional calculations performed on YBaMn2_2O5_5 in the nonmagnetic, ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings are explained with site-, angular momentum- and orbital-projected density of states, charge-density plots, electronic structure and total energy studies. YBaMn2_2O5_5 is found to stabilize in a G-type ferrimagnetic state in accordance with experimental results. The experimentally observed insulating behavior appears only when we include ferrimagnetic ordering in our calculation. We observed significant optical anisotropy in this material originating from the combined effect of ferrimagnetic ordering and crystal field splitting. In order to gain knowledge about the presence of different valence states for Mn in YBaMn2_2O5_5 we have calculated KK-edge x-ray absorption near-edge spectra for the Mn and O atoms. The presence of the different valence states for Mn is clearly established from the x-ray absorption near-edge spectra, hyperfine field parameters and the magnetic properties study. Among the experimentally proposed structures, the recently reported description based on PP4/nmmnmm is found to represent the stable structure

    On the mechanisms of heavy-quarkonium hadroproduction

    Get PDF
    We discuss the various mechanisms potentially at work in hadroproduction of heavy quarkonia in the light of computations of higher-order QCD corrections both in the Colour-Singlet (CS) and Colour-Octet (CO) channels and the inclusion of the contribution arising from the s-channel cut in the CS channel. We also discuss new observables meant to better discriminate between these different mechanisms.Comment: Invited review talk at 3rd International Conference On Hard And Electromagnetic Probes Of High-Energy Nuclear Collisions (HP2008), 8-14 June 2008, Illa da Toxa, Galicia, Spain. 11 pages, 21 figures, LaTeX, uses svjour.cls and svepj.clo (included

    Features of heavy physics in the CMB power spectrum

    Full text link
    The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of `heavy' physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll), even in cases where the normal modes have masses approaching the cutoff of our theory. We emphasise that turning is defined with respect to the geodesics of the sigma model metric, irrespective of whether this is canonical or non-trivial. The imprints generically take the form of damped superimposed oscillations on the power spectrum. In the particular case of two-field models, if one of the fields is sufficiently massive compared to the scale of inflation, we are able to compute an effective low energy theory for the adiabatic mode encapsulating certain relevant operators of the full multi-field dynamics. As expected, a particular characteristic of this effective theory is a modified speed of sound for the adiabatic mode which is a functional of the background inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect non-Gaussian signatures directly related to the features imprinted in the power spectrum.Comment: 41 pages, 6 figures, references updated, minor modifications. Version to appear in JCAP. v4: Equations (4.28) and (4.30) and Figures 5 and 6 correcte

    Doping dependence of the resonance peak and incommensuration in high-TcT_{c} superconductors

    Full text link
    The doping and frequency evolutions of the incommensurate spin response and the resonance mode are studied based on the scenario of the Fermi surface topology. We use the slave-boson mean-field approach to the t−t′−Jt-t^{\prime}-J model and including the antiferromagnetic fluctuation correction in the random-phase approximation. We find that the equality between the incommensurability and the hole concentration is reproduced at low frequencies in the underdoped regime. This equality observed in experiments was explained {\it only} based on the stripe model before. We also obtain the downward dispersion for the spin response and predict its doping dependence for further experimental testing, as well as a proportionality between the low-energy incommensurability and the resonance energy. Our results suggest a common origin for the incommensuration and the resonance peak based on the Fermi surface topology and the d-wave symmetry.Comment: 5 pages, 4 PS figure

    Quarkonium production in high energy proton-proton and proton-nucleus collisions

    Full text link
    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Thereafter, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in a broader perspective, we emphasize the need for new observables to investigate quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.Comment: Overview for the proceedings of QUARKONIUM 2010: Three Days Of Quarkonium Production in pp and pA Collisions, 29-31 July 2010, Palaiseau, France; 34 pages, 30 figures, Late

    Emissions of primary aerosol and precursor gases in the year 2000 and 1750 prescribed data-sets for AeroCom.

    Get PDF
    Inventories for global aerosol and aerosol precursor emissions have been collected (based on published inventories and published simulations), assessed and prepared for the year 2000 (present-day conditions) and for the year 1750 (pre-industrial conditions). These global datasets establish a comprehensive source for emission input to global modeling, when simulating the aerosol impact on climate with state-of-the-art aerosol component modules. As these modules stratify aerosol into dust, sea-salt, sulfate, organic matter and soot, for all these aerosol types global fields on emission strength and recommendations for injection altitude and particulate size are provided. Temporal resolution varies between daily (dust and sea-salt), monthly (wild-land fires) and annual (all other emissions). These datasets benchmark aerosol emissions according to the knowledge in the year 2004. They are intended to serve as systematic constraints in sensitivity studies of the AeroCom initiative, which seeks to quantify (actual) uncertainties in aerosol global modeling
    • …
    corecore