5 research outputs found

    Effect of freshwater influx on phytoplankton in the Mandovi estuary (Goa, India) during monsoon season: Chemotaxonomy

    Get PDF
    The Mandovi estuary is a prominent water body that runs along the west coast ofIndia. It forms an estuarine network with the adjacent Zuari estuary, connected via the Cumbharjua canal. The physico-chemical conditions seen in the Mandovi estuary are influenced by two factors: the fresh water runoff during the monsoon season (June-September) and the tidal influx of coastal seawater during the summer (October to May) season. However, the effects of monsoon related changes on the phytoplankton of the Mandovi estuary are not yet fully understood. An attempt to understand the same has been made here by applying the process of daily sampling at a fixed station throughout the monsoon season. It was noticed that the onset of the monsoon is responsible for an increase in nitrate levels upto 26 μM from <1 μM during pre-monsoon and enhancement of chlorophyll a (chl a) as high as 14 μg·L-1 during the same period. The phytoplankton population was observed through both chemotaxonomy and microscopy and was found to be composed mainly of diatoms. CHEMTAX analysis further uncovers the presence of several other groups of phytoplankton, the presence of which is yet to be reported in many other tropical estuaries. It includes chrysophytes, cyanobacteria, prasinophytes, prymnesiophytes and chlorophytes. The appearance of phytoplankton groups at various stages of the monsoon was recorded, and this data is discussed in relation to environmental changes in the Mandovi estuary during the monsoon season

    Light absorption properties of southeastern Bering Sea waters: Analysis, parameterization and implications for remote sensing.

    Get PDF
    The absorption coefficients of phytoplankton (aPHY(λ)), non-algal particles (NAP) (aNAP(λ)) and colored dissolved organic matter (CDOM) (aCDOM(λ)) were investigated and parameterized in the southeastern Bering Sea during July 2008. The absorption coefficients were well structured with respect to hydrographic and biogeochemical characteristics of the shelf. The highest values of aPHY(443) were observed offshore and the lowest values of aPHY(443) were found in the coastal domain, a low productivity region associated with limited macronutrients. Values of aDG(λ) (aCDOM(λ) + aNAP(λ)) revealed an east–west gradient pattern with higher values in the coastal domain, and lower values in the outer domain. Lower chlorophyll specific aPHY(λ) (a*PHY(λ)) observed relative to middle and lower latitude waters indicated a change in pigment composition and/or package effect, which was consistent with phytoplankton community structure. aCDOM(λ) was the dominant light absorbing coefficient at all wavelengths examined except at 676 nm. Modeling of remote-sensing reflectance (Rrs(λ)) and the diffuse attenuation coefficient (Kd(λ)) from inherent optical properties revealed the strong influence of aCDOM(λ) on Rrs(λ) and Kd(λ). Good optical closure was achieved between modeled and radiometer measured Rrs(λ) and Kd(λ) with average percent difference of less than 25% and 19% respectively, except at red wavelengths. The aCDOM(λ) accounted for > 50% of Kd(λ) which was vertically variable. Chlorophyll-a calculated by the NASA standard chlorophyll-a algorithm (OC4.v6) was overestimated due to higher aCDOM(λ) and underestimated due to lower a*PHY(λ) at low and high concentrations of chlorophyll-a, respectively

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore