37 research outputs found

    The relationship between northern hemisphere winter blocking and tropical modes of variability

    Get PDF
    In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment

    Circulation anomalies in boreal winter: Origin of variability and trends during the ERA-40 period

    Get PDF
    In this diploma thesis the interannual variability and trends of the winter mean tropospheric circulation in the northern hemisphere (NH) extratropics in winters from 1960/61 to 2001/02 are investigated. Output is analysed from a recent version of the atmospheric ECMWF model that has been used to perform various hindcast experiments, including experiments with selected regions of the atmosphere relaxed toward reanalysis data (ERA-40), i.e., the tropics and the stratosphere. The results are compared with the reanalysis data to examine the forecasting skill of the single experiments in the NH extratropics. It is found that the stratosphere is influential on the interannual variability of the North Atlantic Oscillation (NAO) related part of the winter tropospheric circulation variability in the North Atlantic sector (NAS), but less important for other modes of variability in the NAS or over the North Pacific sector (NPS). The influence of the stratosphere on the NAO is thought to be caused by the downward propagation of circulation anomalies, for example, caused by sudden stratospheric warmings. Relaxing the tropical atmosphere is influential for the general circulation variability in the NAS, although the influence on the NAO is somewhat smaller than relaxing the global stratosphere. Both regions of the atmosphere therefore are important for a seasonal forecast in the NAS in winter. In the case of tropical relaxation, adding prescribed observed sea surface temperatures and sea ice (SSTSI) from reanalysis data improves the representation of the NAO in the model and is even more influential in reproducing the observed 42 year trend to a more positive NAO index. The stratosphere has a significant impact on the observed positive NAO trend only between 1964/65 and 1994/95, and in this period is comparable with the other forcings, the tropics and observed SSTSI. However, our model experiments are not able to account for more than 25% of the interannual variance of the NAO and not for more than 40% of the observed trend of the NAO in the ensemble means. In the NPS the tropical atmosphere clearly has a strong impact on the interannual variability, and hence the seasonal predictability, which is measured here by means of the Pacific North America (PNA) pattern index. Single realisations of model experiments with tropical relaxation represent, on average, between 40% and 50% of the variance of the observed PNA pattern. The ensemble mean with SSTSI from reanalysis data and no relaxation captures about 25% of the interannual variance of the observed PNA, but leads to a wrong trend in the PNA between 1960/61 and 2001/02 compared with the observations. The observed trend of the PNA is well captured in terms of the trend pattern if the tropics are relaxed to reanalysis data, except that the magnitude of the trend is reduced in the ensemble mean. It is remarkable that the observed PNA trend between 1960/61 and 2001/02 is also found to be within the range of trends of a control experiment, that sees the climatological mean cycles of SSTSI only. The strong impact of the tropical atmosphere on the extratropical atmosphere in the NPS is associated to the strong link between El Nino related variability in the tropical Pacific and the PNA that was confirmed by a number of previous studies

    Tropical precipitation influencing boreal winter midlatitude blocking

    Get PDF
    Recent studies using reanalysis data and complex models suggest that the Tropics influence midlatitude blocking. Here, the influence of tropical precipitation anomalies is investigated further using a dry dynamical model driven by specified diabatic heating anomalies. The model uses a quasi‐realistic setup based on idealized orography and an idealized representation of the land‐ocean thermal contrast. Results concerning the El Niño Southern Oscillation and the Madden‐Julian Oscillation are mostly consistent with previous studies and emphasize the importance of tropical dynamics for driving the variability of blocking at midlatitudes. It is also shown that a common bias in models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, excessive tropical precipitation, leads to an underestimation of midlatitude blocking in our model, also a common bias in the CMIP5 models. The strongest blocking anomalies associated with the tropical precipitation bias are found over Europe, where the underestimation of blocking in CMIP5 models is also particularly strong

    On the extratropical influence of variations of the upper tropospheric equatorial zonal mean zonal wind during boreal winter

    Get PDF
    Variations in the global tropospheric zonal mean zonal wind ([U]) during boreal winter are investigated using Rotated Empirical Orthogonal Functions applied to monthly means. The first two modes correspond to the Northern and Southern Annular Mode and modes 3 and 4 represent variability in the tropics. One is related to El Niño Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5°N and 5°S ([U150]E) and is related to activity of the Madden-Julian Oscillation. The extratropical response to [U150]E is investigated using linear regressions of 500 hPa geopotential height onto the [U150]E time series. We make use of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Center for Medium Range Weather Forecasts model in which the tropical atmosphere is relaxed towards reanalysis data. The regression analysis reveals that a shift of the Aleutian low and a wave train across the North Atlantic are associated with [U150]E. We find that the subtropical waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]E. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America. Finally, we show that a linear combination of both [U150]E and the Quasi Biennial Oscillation in the lower stratosphere can explain the circulation anomalies of the anomalously cold European winter of 1962/63 when both were in an extreme easterly phase

    Tropical forcing of the Summer East Atlantic pattern

    Get PDF
    The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave

    Initialization and Ensemble Generation for Decadal Climate Predictions: A Comparison of Different Methods

    Get PDF
    Five initialization and ensemble generation methods are investigated with respect to their impact on the prediction skill of the German decadal prediction system “Mittelfristige Klimaprognose” (MiKlip). Among the tested methods, three tackle aspects of model‐consistent initialization using the ensemble Kalman filter, the filtered anomaly initialization, and the initialization method by partially coupled spin‐up (MODINI). The remaining two methods alter the ensemble generation: the ensemble dispersion filter corrects each ensemble member with the ensemble mean during model integration. And the bred vectors perturb the climate state using the fastest growing modes. The new methods are compared against the latest MiKlip system in the low‐resolution configuration (Preop‐LR), which uses lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere reanalyses for initialization. Results show that the tested methods provide an added value for the prediction skill as compared to Preop‐LR in that they improve prediction skill over the eastern and central Pacific and different regions in the North Atlantic Ocean. In this respect, the ensemble Kalman filter and filtered anomaly initialization show the most distinct improvements over Preop‐LR for surface temperatures and upper ocean heat content, followed by the bred vectors, the ensemble dispersion filter, and MODINI. However, no single method exists that is superior to the others with respect to all metrics considered. In particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with respect to the basin‐wide long‐term mean and variability and with respect to the temporal evolution at the 26° N latitude

    Impact of the MJO on the interannual variation of the Pacific–Japan mode of the East Asian summer monsoon

    Get PDF
    The spatial pattern of the first mode of interannual variability associated with the East Asian summer monsoon (EASM), obtained from a multivariate Empirical Orthogonal Functions (MV-EOF) analysis, corresponds to the Pacific–Japan (PJ) pattern and is referred to as the PJ-mode. The present study investigates the interannual variation of the PJ-mode from the perspective of the intraseasonal timescale. In particular, the impact of the Madden–Julian oscillation (MJO) on the interannual variation of the PJ-mode is investigated. The results show that the MJO has a significant influence on the interannual variation of the PJ-mode mainly in the lower troposphere (850 hPa) and that the former accounts for approximately 11% of the amplitude of the latter. The major part of the contribution comes from a change in frequency of the different phases of the MJO, especially that of MJO phase 6. This suggests that intraseasonal variation of the convection anomalies over the tropical eastern Indian and western Pacific Oceans plays an important role in the interannual variation of the PJ-mode. In addition, MJO phase 7 also contributes to the interannual variability of the PJ-mode, in this case induced by both the change in frequency and the change in circulation anomalies associated with MJO phase 7

    Origin of Variability in Northern Hemisphere Winter Blocking on Interannual to Decadal Time Scales

    Get PDF
    Variability of mid-latitude blocking in the boreal winter northern hemisphere is investigated for the period 1960/61 to 2001/02 by means of relaxation experiments with the model of the European Center for Medium-Range Weather Forecasts. It is shown that there is pronounced interannual and decadal variability in blocking, especially over the Eurasian continent, consistent with previous studies. The relaxation experiments show that realistic variability in the tropics can account for a significant part of observed interannual blocking variability, but also that about half of the observed variability can only be explained by extratropical tropospheric variability. On the quasi-decadal time scale, extratropical sea surface temperature and sea-ice, in addition to tropical variability, play a more important role. The stratosphere, which has been shown to influence interannual variability of the North Atlantic Oscillation in previous studies, has no significant influence on blocking according to our analysis

    Tropical influence independent of ENSO on the austral summer Southern Annular Mode

    Get PDF
    A link between atmospheric variability in the Tropics independent of ENSO and the Southern Annular Mode (SAM) is found based on seasonal mean data for austral summer. Variations associated with El Niño Southern Oscillation (ENSO) are removed usinga linear method and a Tropics Index (TI) is defined as the zonal average of the ENSO-removed 500 hPa geopotential height between 10°S and 10°N. Since the detrended TI shows no link to SST variability in the Tropics, it appears to be related to internal atmospheric variability. We find that the TI can explain about 40% variance of the SAM interannual variability and about 75% of the SAM long term trend between 1957/58 and 2001/02, where here the SAM includes the ENSO signal. Positive/negative values of the TI are associated with the positive/negative SAM. A possible link between the TI and global warming is noted
    corecore