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Abstract Five initialization and ensemble generation methods are investigated with respect to their
impact on the prediction skill of the German decadal prediction system “Mittelfristige Klimaprognose”
(MiKlip). Among the tested methods, three tackle aspects of model-consistent initialization using the
ensemble Kalman filter, the filtered anomaly initialization, and the initialization method by partially
coupled spin-up (MODINI). The remaining two methods alter the ensemble generation: the ensemble
dispersion filter corrects each ensemble member with the ensemble mean during model integration.
And the bred vectors perturb the climate state using the fastest growing modes. The new methods are
compared against the latest MiKlip system in the low-resolution configuration (Preop-LR), which uses
lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere
reanalyses for initialization. Results show that the tested methods provide an added value for the prediction
skill as compared to Preop-LR in that they improve prediction skill over the eastern and central Pacific
and different regions in the North Atlantic Ocean. In this respect, the ensemble Kalman filter and filtered
anomaly initialization show the most distinct improvements over Preop-LR for surface temperatures and
upper ocean heat content, followed by the bred vectors, the ensemble dispersion filter, and MODINI.
However, no single method exists that is superior to the others with respect to all metrics considered. In
particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with
respect to the basin-wide long-term mean and variability and with respect to the temporal evolution at the
26◦ N latitude.

1. Introduction
Over the last years, decadal climate prediction has matured substantially to the point that it is now being
developed into semioperational applications (see, e.g., Boer et al., 2016; Doblas-Reyes et al., 2011; Keenlyside
et al., 2008; Kirtman et al., 2013; Meehl et al., 2014; Pohlmann et al., 2009; Smith et al., 2007). A recent exam-
ple is the decadal climate prediction system MiKlip (developed during the German project “Mittelfristige
Klimaprognose”; Marotzke et al., 2016) that within the near future will be taken over by the German Meteo-
rological Office (DWD). Despite this enormous success, however, many important aspects need to be further
improved to boost up the current level of prediction skill of such a system to what can be expected from
theoretical considerations (e.g., Boer et al., 2013; Branstator & Teng, 2010, 2012; Griffies & Bryan, 1997).

It can be expected that among the candidates leading to further improvement are the initialization as well
as ensemble generation methods. With respect to initialization, we know that present practices that imply
using different models for generating initial states and making predictions and/or using uncoupled data
assimilation systems for initialization might be suboptimal due to presence of dynamic inconsistencies
between the initial state and the prediction system leading to initialization shocks (e.g., Kröger et al., 2018;
Mulholland et al., 2016; Pohlmann et al., 2017). With respect to ensemble generation, due to insufficient
span of ensemble spread, some sources of prediction uncertainty are underrepresented (Germe et al., 2017;
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Palmer, 2000). In order to foster progress on both fronts, the aim of this paper is to analyze novel initialization
and ensemble generation methods with respect to their potential effect on the skill of a decadal prediction
system. The new methods are tested in the framework of the MiKlip prediction system, but findings reported
below should hold also for other systems.

Previously, the MiKlip prediction system, which is based on the Max Planck Institute for Meteorology Earth
System Model (MPI-ESM), has undergone several development stages and evolved from the baseline sys-
tem with ocean-only initialization to the preoperational system with initialized atmosphere, ocean, and sea
ice components. Overall, the prediction system shows a robust skill for annual surface temperatures over
large areas of the world ocean and for seasonal temperatures over Europe (Marotzke et al., 2016; Müller
et al., 2012). However, regions like the North Atlantic subpolar gyre (SPG) and the central and eastern
Pacific Ocean are especially sensitive to initialization; in these regions, the prediction system is swiftly losing
prediction skill (Kröger et al., 2018; Pohlmann et al., 2017).

The current study is performed in the framework of the preoperational MiKlip prediction system in
low-resolution configuration (Preop-LR). During the course of the study, we investigate whether the MiK-
lip system can further benefit from initialization and ensemble generation methods such as an oceanic
ensemble Kalman filter (EnKF), a filtered anomaly initialization (FAI), an initialization method by partially
coupled spin-up (MODINI), an ensemble dispersion filter (EDF), and an oceanic bred vectors (BV) method.
Using these methods, which are described in detail in section 2, we will investigate whether dynamically
consistent initialization and improved representation of ocean initial state uncertainty may further improve
the prediction skill of predictable components. The skill assessment is carried out on 10-member ensembles
and covers the verification period 1962–2016 for all the initialization and ensemble generation methods.

The remainder of the paper is organized as follows: In section 2, we briefly describe the MiKlip prediction
system and give more details on the proposed initialization and ensemble generation methods. In section
3, we analyze prediction skill for surface air temperature (SAT). Also, analyses of ocean heat content in the
upper 700 m (HC700) and the Atlantic Meridional Overturning Circulation (AMOC) are provided to better
understand the performance of the different methods. Finally, section 4 summarizes the results and provides
the conclusions.

2. Methodology
All the retrospective initialized decadal predictions (hereafter initialized hindcasts) and the uninitialized
historical simulations are based on the Max Planck Institute Earth System Model (MPI-ESM) version 1.2
(Müller et al., 2018). All simulations are performed in the low-resolution (LR) configuration MPI-ESM-LR.
The atmospheric component of MPI-ESM is ECHAM6 (Stevens et al., 2013) configured with a T63L47 resolu-
tion. The oceanic component MPIOM (Jungclaus et al., 2013) is implemented with 1.5◦ horizontal resolution
and 40 vertical levels.

2.1. Preop-LR
Preop-LR is used as a reference, against which the methods described in the following section 2.2 are com-
pared. The Preop-LR assimilation is based on nudging the ocean toward ORAS4 temperature and salinity
anomalies (Balmaseda et al., 2013) and the atmosphere toward ERA-40/ERA-Interim temperature, vorticity,
divergence, and surface pressure full-field values (Dee et al., 2011; Uppala et al., 2005). ORAS4 anomalies
are calculated with respect to the 1961–2005 climatology. The full-field initialization based on ORAS4 and
GECCO2 reanalyses was tested earlier in the project (prototype systems described by Marotzke et al., 2016)
and was dismissed at one of the development stages of the prediction system after Kröger et al. (2018) has
demonstrated that MPI-ESM shows better skill for the North Atlantic when initialized from ORAS4 anoma-
lies. Their study showed that nudging toward temperature and salinity full fields from the reanalysis induced
ocean heat and mass transport changes, which triggered model adjustments through artificial heat sources
and sinks in the forecast mode.

The Preop-LR nudging run is started from the historical simulation and is carried out over 1960–2016. The
relaxation time in the ocean is 11 days, and in the atmosphere: 6 hr for vorticity, 24 hr for temperature
and surface pressure, and 48 hr for divergence. The sea-ice concentration is nudged to the NSIDC data
(National Snow and Ice Data Center; Fetterer et al., 2016) with the relaxation time of 11 days. The initialized
hindcasts are started from the 1st of November over 1960–2016. Hindcast ensembles consist of 10 ensemble
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Table 1
Summary of Experiments

Assimilation
Experiment Ocean Atmosphere Sea ice Initialized hindcastsa Ensemble generationa

Nudging to Nudging to NSIDC Yearly started Lagging
Preop-LR ORAS4 T&S ERA40/ anomalies over 1960–2016, by 1–9 days

anomalies ERA-Interim 10-year long after the start date,
full field 10 members

Bred Vectors Yearly started from the BV-based
(BV) Preop-LR assimilation perturbations

over 1960–2016, for T&S, and u&v,
10-year long 10 members

Yearly started from the
Ensemble Preop-LR assimilation
dispersion over 1960–2015, 5-year long. EDF,
filter (EDF) Re-initialization every 3 months 10 members

from the ensemble mean
for T and SAT

Ensemble Yearly started EnKF,
Kalman EN4 T&S No Over 1960–2016, 16 members
filter full value 10-year long
(EnKF)

Filtered 1-month nudging to 1-month nudging to Lagging
anomaly filtered ERA40 1-month nudging to Yearly started by 1–9 days
initialization ORAS4 T&S ERA-Interim NSIDC over 1960–2015, after the start date
(FAI) anomalies full field anomalies 10-year long 10 members

Model ECHAM6
initialization Reanalysis response Yearly started Lagging
by partially wind-stress to MPIOM using As for over 1960–2015, by 1–4 days
coupled anomalies seen the coupled the ocean 5-year long from three assimilation runs
spin-up by MPIOM model dynamics 12 members
(MODINI)
aAcross the methods, the skill assessment is carried out on 10-member ensembles and the verification period 1962–2016. Preop-LR = preoperational MiKlip
prediction system in low-resolution configuration; T&S = temperature and salinity; SAT = surface air temperature.

members and are generated by lagging the climate state by 1–9 days after the initialization date. The external
forcing that is applied to initialized hindcasts is the same as for the uninitialized historical simulations: the
Coupled Model Intercomparison Project Phase 5 (CMIP5). solar irradiance data, aerosol and greenhouse
gas concentrations over 1850–2005 (Taylor et al., 2012), and the RCP4.5 pathway over 2006–2025 (Giorgetta
et al., 2013). Further details concerning the Preop-LR experimental setup and differences to it from the
test-suite experiments are given in Table 1.

2.2. Details of the Test-Suite Setup
The MiKlip project is organized in four modules focusing on initialization, evaluation, processes, and region-
alization and is concentrated around a single prediction system (www.fona-miklip.de; Marotzke et al., 2016).
These modules provide tailored research for the central prediction system to enable its further advance-
ment. Hence, when performing the test-suite experiments for this study, initialization module followed the
Preop-LR setup as close as possible, that is, used the same model setup, model version, forcing and nudging
fields, and postprocessing procedure to enable clean comparison. Finally, work packages which provided
minimum requirement of 10 ensemble members, yearly initialization over 1960–2015 were qualified for the
test suite. The minimum requirement for ensemble size and initialization period followed recommenda-
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tions of the study by Sienz et al. (2016). Thus, it is expected that differences between the performance of
the proposed methods and Preop-LR are attributable to a particular initialization and ensemble generation
method.

2.2.1. EnKF
The oceanic EnKF analyzed in this study is the first attempt to directly insert ocean data into the MiK-
lip prediction system for initialization of decadal predictions. This method assimilates full values (i.e., not
corrected for any model bias as for instance in Counillon et al., 2016) of the monthly subsurface temper-
ature and salinity profiles from the EN4 data (Good et al., 2013). Thus, in contrast to using nudging of
reanalysis as in Preop-LR, another ocean model's biases do not enter the prediction system. The EnKF rep-
resents a weakly coupled data assimilation system. While the oceanic component of each ensemble member
is updated by the oceanic EnKF once a month, the atmospheric component of each member is nudged
toward ERA-40/ERA-Interim at every time step (10 min). The fluxes between the atmosphere and ocean are
exchanged during coupling every hour. The EnKF in its local variant as used in this study is a follow up of
the global variant approach described by Brune et al. (2015, 2018). The method is based on the Parallel Data
Assimilation Framework (Nerger & Hiller, 2012) with the localized singular evolutive interpolated EnKF
(Pham, 2001).

The EnKF assimilation involves two spin-up phases to allow MPI-ESM adapting its climate and oceanic
overturning circulation to the observed climate and to mitigate initialization shocks. Theses spin-ups (1)
and (2) are followed by the actual coupled assimilation (3):

1. The first spin-up phase accounts for 300 years of atmospheric nudging in MPI-ESM toward a monthly
climatology from ERA-40 calculated over the period 1958–1967 (1 ensemble member). No explicit restric-
tions are applied to the oceanic component. The atmospheric nudging methodology is similar to that in
Preop-LR (see section 2.1).

2. The second spin-up phase represents a 50-year coupled assimilation with atmospheric nudging and the
oceanic EnKF. The 16 ensemble members are generated from the last 16 years of the spin-up phase 1.
The oceanic EnKF assimilates once per month full-value EN4 monthly climatological temperature and
salinity profiles calculated by aggregating all available profiles over the period 1950–1959 in monthly bins.
The technical details of the EnKF assimilation are described in step 3. The atmospheric nudging uses the
same monthly climatology from ERA-40 as in spin-up phase 1.

3. The coupled assimilation, which serves as a pool of initial conditions for decadal predictions, is started at
the end of spin-up phase 2 and covers the period 1958–2016, over which the full-value EN4 temperature
and salinity profiles are assimilated into MPI-ESM through the oceanic EnKF and ERA-40/ERA-Interim
through nudging. In this setup, no atmospheric nudging is applied near the air-sea boundary in the lower
five atmospheric layers. Also, no satellite data are assimilated in the EnKF. The main differences between
the EnKF assimilation with the localized variant as in this study and the assimilation with the global
variant as in Brune et al. (2015, 2018) are horizontal localization (here, 5◦ radius), vertical localization
within a single layer, parameter localization (parameter-wise), and an artificial inflation of the ensemble
spread (between 1 and 1.01). The observation error is 1 K for temperature and 1 psu for salinity; it is
uniformly applied at all grid cells similar to Brune et al. (2015, 2018). Overall, the current EnKF setup leads
to a stronger impact of oceanic observations as compared to the former EnKF setup with the global variant;
with that we aim for a stronger impact of the oceanic component on the prediction skill. In contrast to
Preop-LR, sea-ice nudging to NSIDC is not used because in the EnKF, it leads to a degeneration of the
oceanic state estimate near the ocean surface in regions close to the ice edge.

Hindcasts are initialized every year from the 1st of November over 1959–2016 and run for 10 years and 2
months (Table 1). Every hindcast member is a direct continuation of the corresponding assimilation member
without any further assimilation applied. For the intercomparison in this study, we use the first 10 EnKF
ensemble members.
2.2.2. FAI
Filtering variability from the nonnative reanalysis that cannot be predicted by the MiKlip prediction system
is implemented in FAI by projecting ocean reanalysis anomalies onto the modes of variability inherent to the
prediction system. Similar methodologies have been implemented to eliminate the effect of higher frequency
components (noise) on the numerical weather forecast skill, to obtain a correctly balanced initial state for

POLKOVA ET AL. 152



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001439

data assimilation procedures, and to initialize long-lived stable modes for seasonal predictions (e.g., Ballish,
1981; Branstator et al., 1993; Williamson, 1976). To this end, FAI is implemented as follows:

1. First, we derive modes of variability using the bivariate empirical orthogonal function (EOF) analysis
applied to 15 ensemble members of the uninitialized historical simulations (from Giorgetta et al., 2013).
The multivariate 3-D-EOF methodology is similar to that in Hawkins and Sutton (2007). Potential tem-
perature and salinity October anomalies used for the EOF analysis are calculated with respect to the
period 1958–2005, for which the historical simulations and the ORAS4 ocean reanalysis overlap. Before
the EOF analysis, anomalies are weighted by their contribution to density (i.e., thermal and haline
expansion coefficients) and the grid-box area.

2. Next, we truncate the set of EOF modes and project ORAS4 potential temperature and salinity anomalies
onto the truncated set of EOFs. The truncation threshold is picked at an arbitrary point, at which the
reconstruction loses a small amount (∼3%) of variance explained, retaining half of the EOF modes (360
out of 720). After the truncation, the reconstruction retains 40% of variance explained as compared to
the original ORAS4 reanalysis.

3. Assimilation and initialization of hindcasts: To produce coupled initial conditions for decadal hindcasts,
the assimilation runs are performed for Octobers over the period 1960–2015. Here potential tempera-
ture and salinity fields are nudged toward the reconstructed ORAS4 anomalies added to the climatology
from a historical simulation. The ERA-40/ERA-Interim October states are nudged into the atmospheric
component of MPI-ESM using the methodology described for Preop-LR (see section 2.1). Different to
Preop-LR, the FAI assimilation run requires restarts from a historical simulation on the 30th of Septem-
ber of each year over the whole initialization period. The feasibility of 1-month assimilation as compared
to conventional 12-month assimilation has previously been tested in that nonfiltered Preop-LR-like
experiments (nudging run and ensembles of initialized hindcasts) were carried out with 1-month nudg-
ing similar to FAI setup. Ensembles of the FAI hindcasts are started every year over 1960–2015 and are
10 years and 2 months long with 10 ensemble members (Table 1). As with Preop-LR, FAI uses lagged ini-
tialization to generate an ensemble of predictions. However, there are some differences in detail: Because
the FAI assimilation runs are 1-month long, initial conditions are sampled from 9-days long free runs
following each assimilation.

2.2.3. Model Initialization by Partially Coupled Spin-up (MODINI)
MODINI is proposed considering the importance of dynamically balanced ocean-atmosphere initial condi-
tions in the equatorial oceans. In contrast to a 3-D initialization of the ocean and atmosphere, this method
only uses surface wind-stress anomalies from the reanalysis to drive the ocean and the sea ice. All other
feedbacks are maintained as in the fully coupled model. The merits of MODINI for the equatorial Pacific
skill have earlier been shown by Thoma et al. (2015) and used as a benchmark to understand the initializa-
tion shock in the first generation of the MiKlip prediction system by Pohlmann et al. (2017). These studies
emphasize the importance of using high-quality wind products for initialization of decadal predictions. The
MODINI experiments are carried out in three phases:

1. The preinitialization phase before 1958 consists of three historical simulations (Müller et al., 2018).
2. Three assimilation runs are initialized from the different historical simulations. During assimilation

phase, the ocean and sea ice components of MPI-ESM are forced by the wind stress anomalies from the
atmospheric reanalyses. For the period 1958–1989, the wind-stress anomalies are estimated from ERA-40
(Uppala et al., 2005) and for 1990–2016 from ERA-Interim (Dee et al., 2011). Using the bulk formulae
of Large and Yeager (2009), 10-m wind velocities from the reanalysis are converted into wind stress. In
particular, the wind stress 𝜏 seen by the ocean model during the initialization is

𝛕 = 𝛕(urean) − 𝛕(urean)clim + 𝛕(umodel)clim, (1)

where u = (u, v) indicates the horizontal wind velocity from the model, umodel, and from the reanalysis,
urean. Index 𝜏()clim stands for wind stress climatology, which is for the combined reanalyses computed
over the period 1958–2016 and for the model over 1958–2005. The model climatology is based on the three
historical simulations used to initialize the assimilation runs. All climatologies are seasonally varying
monthly means.

3. Initialization of hindcasts: four daily-lagged ensemble members are generated for each of the three assim-
ilation runs to construct 12 ensemble members in total. Initialized hindcasts are started yearly from
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1960 to 2015, each hindcast covers 5 years and 2 months (Table 1). The ensemble members r1(i1–i4)p2,
r2(i1–i4)p2, and r3(i1–i2)p2 are used for the comparison with Preop-LR and the rest of the test suite.

2.2.4. EDF
The EDF builds on the fact that an ensemble-mean prediction usually has a better skill than individual
realizations. Considering that ensemble members contain predictable signals and evolved noise from initial
perturbations, the ensemble mean will average out this noise, retaining the predictable component which
leads to increased prediction skill (Kalnay et al., 2006). Thus, during model integration, the EDF performs
periodic ensemble mean resampling in order to control the ensemble spread. The ensemble resampling
approach in EDF is close to that of jackknife resampling (Quenouille, 1956). The EDF was shown to lead
to more accurate predictions than those from the MiKlip prediction system in terms of global mean and
regional temperature, precipitation, and winter cyclones (Kadow et al., 2017).

In more detail, the EDF initialized hindcasts are started from the Preop-LR assimilation run and are reini-
tialized every 3 months. Therefore, the first 3 months of Preop-LR and the EDF are identical. Before the
fourth month gets started in the EDF, 10 new ensemble members are calculated by ensemble-averaging the
full-depth ocean temperature and SAT from different combinations of nine ensemble members chosen from
the total set of 10 members. Thereby, the temperature spread is largely reduced, while a certain spread is
maintained. The procedure is repeated every 3 months over the necessary prediction range (in this study, 5
years; Table 1). Since the EDF is an add-on procedure, it depends on the underlying initialization strategy,
for which it shifts climate predictions toward the in-run ensemble mean. Within this study, the EDF is car-
ried out for the above-outlined Preop-LR system (see section 2.1). The decadal experiments are started on
the 1st of November every year over the period 1960–2015 (Table 1).
2.2.5. BV
Several advanced ensemble generation methods based on oceanic singular vectors and anomaly transform
have earlier been tested for the MiKlip prediction system in a low-resolution configuration by Marini et al.
(2016) and Romanova and Hense (2017), respectively. These studies show that, in the first few lead years,
perturbations induced by the atmospheric noise grow faster than oceanic perturbations, eventually dom-
inating the contribution to the total ensemble spread in the later lead years. It is also demonstrated that
large-scale ocean perturbations have lower growth rates. Among those, temperature perturbations have a
larger effect on the error growth than salinity perturbations. The BV method discussed in this study is a
follow-up of the method proposed by Toth and Kalnay (1993) and Keller et al. (2008). It is designed to rep-
resent the dynamical modes in the variability-active regions and the regions of deep water formation. The
advantages of the BV method are (i) reasonable instability patterns on the climatic timescales in perturba-
tion sensitive regions and (ii) energy conservation as no additional energy sources or sinks are introduced
to the perturbation fields. Thus, 10 oceanic BV perturbations for each initialization date are calculated in
parallel. For each perturbation, the following algorithm is implemented:

1. The BV routine starts with a random-noise perturbation applied to the unperturbed ocean state sampled
from the Preop-LR nudging run (see section 2.1) at a particular initialization date. Fastest growing errors
resulting from the initial perturbation are bred over five iteration steps.

2. At each iteration, a 1-year simulation is carried out, at the end of which the metric based on a total energy
norm is applied to evaluate perturbation growth rates and to rescale the perturbation to be used in the
following iteration. The total energy norm contains the zonal and meridional contributions of the oceanic
flow to the kinetic energy (the sum in the first parentheses) and the available potential energy (the term
in the second parentheses):

||x||E = (
wu

2 ∫ u′2 dV +
wv

2 ∫ v′2 dV) + (
w𝜌

2𝜌0 ∫
𝜌′2

𝜌z
dV), (2)

where u′ = ui − un, v′ = vi − vn, and 𝜌
′ = 𝜌i − 𝜌n are the velocity and density anomalies, and indices

i and n indicate the two different oceanic state vectors which are compared by the norm. The weighting
coefficients wu, wv, and w𝜌 are calculated such that zonal and meridional kinetic and potential energy
components have equal contributions to the total energy (Keller et al., 2008). The perturbation is rescaled
based on the ratio between the total energy growth at the initial and the final state of each iteration (a
breeding cycle). The norm constrains initial perturbation to the geographical locations of the total energy
growth. By definition, the norm conserves the energy and does not allow sinks or sources on global scale,
that is, the total energy is not changed, when the perturbation is added to the initial state. At the end of
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the fifth iteration, a further rescaling coefficient is applied, which keeps perturbation amplitudes in the
range of anomalies from the unperturbed state.

3. Initialization of hindcasts: Perturbations are added to the ocean potential temperature, salinity, and zonal
and meridional velocity fields (u&v) from the Preop-LR nudging run, from which the initialized hindcasts
are started every year on the 1st of November over 1960–2016 and are 10 years and 2 months long (Table 1).

2.3. Verification Metrics and Data
The prediction skill of the test suite is estimated for SAT, sea surface temperature (SST), and HC700. To get
some insight into the test-suite performance for the AMOC, we analyze the basin-wide long-term mean,
standard deviation, and the time series at 1,000-m depth, 26.5◦ N latitude. As verification data sets, we use
HadCRUT4 for SAT (Morice et al., 2012), HadISST1.1 for SST (Rayner et al., 2003), the NOAA/NODC prod-
uct for HC700 (National Oceanic and Atmospheric Administration, National Oceanographic Data Center;
Levitus et al., 2012), and RAPID for AMOC at 26◦ N (Smeed et al., 2016).

Within the MiKlip project, a verification tool (www-miklip.dkrz.de/plugins/) was developed for an ad hoc
evaluation of the MiKlip experiments and their comparison to the central MiKlip prediction system (plugins
from Illing et al., 2014; Kadow et al., 2015; Stolzenberger et al., 2015 and others). Prediction skill in terms of
correlation and mean squared error (MSE) and an assessment of significance level follows the verification
framework proposed by Goddard et al. (2013). The EnKF is based on full-value initialization and requires a
lead-time dependent bias correction. For a consistent analysis, the same bias correction procedure is applied
to all test-suite experiments. The metrics are applied to calculate skill at lead years 1 and 2–5, covering
the verification period 1962–2016. Thus, initialized hindcasts started in 1961–2015 are used for lead year 1
analysis and hindcasts started in 1960–2011 for lead years 2–5. The first two lead months (November and
December) of all the initialized hindcasts are not part of the comparison. The skill assessment is carried out
on 10-member ensembles for all the initialization and ensemble generation methods.

Thus, the following prediction skill metrics are analyzed:

1. The correlation skill, rHO, is used, where index O stands for the observational data and H for the initialized
hindcasts at a particular lead time.

2. The MSE skill score (MSESS) compares the MSE from the test-suite experiment to either the observed
climatology or Preop-LR. MSESS is derived as 1 − (MSEH∕MSER), where index R stands for the refer-
ence hindcasts. The skill score has a range from −∞ to +1 and indicates improvements for the test-suite
hindcasts (or the reference) in case of positive MSESS (or negative MSESS) values.

3. Evaluating ensemble prediction systems, it is common to compare the MSE of the ensemble mean pre-
diction, MSEH , with the average ensemble variance, 𝜎2

H (Fortin et al., 2014, and references therein). If
the ensemble variance is smaller (larger) than the MSE, the ensemble is considered to be underdisper-
sive (overdispersive). As predictions are known to struggle accounting for all sources of uncertainties
(due to initial state, model formulations, and external forcing), they might show underdispersive ensem-
ble spread. If an ensemble prediction has a perfect spread-to-error ratio (i.e., it equals 1), this means that
the ensemble spread is as large as the typical error between a single ensemble member and observations
(
√

𝜎2
H =

√
MSEH). In this case, the ensemble spread is considered to be representative of uncertainties

in the prediction. At the same time, the spread-to-error ratio does not indicate that the prediction error is
small (for accurate prediction). For instance, the spread-to-error ratio can also equal one if a prediction
system is characterized by large errors and large spread. Because of the latter, additionally to the common
spread-to-error ratio, it is suggested to consider the metrics that describe characteristics of the predic-
tions systems based on actual and potential prediction skill. The spread-to-error ratio in some studies is
also known as the ensemble spread score (ESS; Keller & Hense, 2011). The ESS for the standardized vari-
ables can be defined as a function of the correlation coefficient (actual prediction skill) and the common
variance of ensemble predictions, p (a measure of sharpness or potential prediction skill):

ESS =
1 − p

p + 1 − 2 · rHO ·
√

p
. (3)

Details to the ESS follow the procedure described by Glowienka-Hense et al. (2018) and are briefly sum-
marized in the Appendix A. An ESS of 1 indicates an optimal ensemble spread (with a flat analysis rank
histogram) with the correlation being equal to

√
p. Values less than 1 suggest that the ensemble is too
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Figure 1. Correlation skill for SAT w.r.t. HadCRUT4 for lead years 2–5 from Preop-LR (top left panel) and the correlation skill difference between a particular
test-suite experiment and Preop-LR (first to third rows). Hindcasts initialized from 1960 to 2011 are evaluated. Stippling indicates statistical significance
estimated with the bootstrap method that the value is positive at the 95% confidence level. Areas are masked where time series from the observational data set
contain missing values. SAT = surface air temperature; Preop-LR = preoperational MiKlip prediction system in low-resolution configuration; EDF = ensemble
dispersion filter; EnKF = ensemble Kalman filter; FAI = filtered anomaly initialization.

sharp (ensemble members evolve close to each other), which might be due to the ensemble generation pro-
cedure or due to model deficiencies. It is expected that a reduction in sharpness must lead to a reduction
of correlation. Then reliability of an ensemble spread is inferred from a balance between the two terms.
Also for this metric, there can be the case of ESS = 1 when an ensemble shows no potential predictability
(p = 0).

3. Results
3.1. Prediction Skill for SAT and the Upper-Ocean Heat Content (HC700)
The SAT prediction skill from the reference system Preop-LR in terms of correlation coefficients and MSESS
with respect to HadCRUT4 climatology for lead years 2–5 is shown in Figures 1 and 2. A comparison of cor-
relation and MSE skill from the test-suite versus Preop-LR is shown in terms of correlation skill differences
to Preop-LR (Figure 1) and MSESS (Figure 2), respectively. Apart from the eastern and central Pacific Ocean
and the frontal area of the western-boundary currents, Preop-LR correlates well with SAT from the Had-
CRUT4 verification data set (Figure 1). In the Pacific Ocean, there is an area of reduced skill in lead years
2–5 resembling a characteristic oscillation pattern, that is, the Pacific Decadal Oscillation. Though all the
test-suite methods show significant correlation differences to Preop-LR in this area of the Pacific Ocean as
estimated with the bootstrap method (Figure 1), the correlation skill itself becomes significant only in the
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Figure 2. MSESS for SAT w.r.t. the HadCRUT4 climatology for lead years 2–5 from Preop-LR (top left panel). MSESS for SAT w.r.t. Preop-LR for the test-suite
experiments (first to third rows). Hindcasts initialized from 1960 to 2011 are evaluated. The range of MSESS is from −∞ to +1. Stippling indicates significant
MSESS values as estimated with the bootstrap method at the 95% confidence level. SAT = surface air temperature; Preop-LR = preoperational MiKlip
prediction system in low-resolution configuration; EDF = ensemble dispersion filter; EnKF = ensemble Kalman filter; FAI = filtered anomaly initialization;
MSESS = mean squared error skill score.

EnKF and FAI over the northern North Pacific and the central tropical Pacific and in the EnKF over the
North Atlantic (supporting information Figure S1).

A reduction of MSE as compared to Preop-LR accompanies correlation skill improvements in the eastern
tropical Pacific (Figure 2). Here FAI, the EnKF, and MODINI have the highest impact on the MSE as com-
pared to Preop-LR. Further improvements are shown by FAI in the Gulf of Alaska and in the subtropical
North Atlantic. Over the continents, the EnKF shows overall better MSE skill than Preop-LR. However,
there are also large areas in the extratropics where the EnKF hindcasts are significantly outperformed by
Preop-LR, which might be associated with an overestimation of variability strength in the EnKF ensem-
ble as discussed by Brune et al. (2018). In comparison with Preop-LR, MODINI shows large areas with
reduced MSE skill, in particular in the tropics and the North Atlantic. The BV and EDF show some modest
improvements in the eastern tropical Pacific and the subpolar North Atlantic as well.

Due to slow dynamics of the ocean and its large thermal capacity, the ocean is widely recognized as the mem-
ory of the climate system on decadal timescales (Meehl et al., 2009; Yeager et al., 2018; Yeager & Robson,
2017). In the following, we would like to evaluate whether the test-suite shows an impact on the predictabil-
ity of HC700 (Figure 3). Overall, in comparison to Preop-LR, the EnKF and FAI reveal better agreement
with the NOAA/NODC heat content in the eastern and central Pacific Ocean. However, the EnKF shows
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Figure 3. Correlation skill for HC700 w.r.t. the NOAA/NODC product for lead years 2–5 from Preop-LR (top left panel) and the correlation skill difference
between a particular test-suite experiment and Preop-LR (first to third rows). Hindcasts initialized from 1960 to 2011 are evaluated. Stippling indicates
statistical significance estimated with the bootstrap method at the 95% confidence level. Preop-LR = preoperational MiKlip prediction system in low-resolution
configuration; EDF = ensemble dispersion filter; EnKF = ensemble Kalman filter; FAI = filtered anomaly initialization; HC700 = ocean heat content in the
upper 700 m.

negative correlation along the Canary Current and the Indian Ocean. In the Arctic Ocean, Preop-LR shows
negative correlation already in the first lead year (not shown). Also, small areas of reduced skill in the first
lead year grow in size in the following lead years in the central Pacific, the North Atlantic between 40◦ N and
50◦ N latitudes, and the tropical Atlantic. The EDF and the BV, which build on the Preop-LR assimilation,
inherit low skill areas of Preop-LR.

From the comparison of the prediction skill for SAT and HC700, two regions stand out where several
test-suite methods bring the highest improvements: the North Atlantic Ocean and the central Pacific Ocean.
In the following sections we take a closer look at these regions.

3.2. Skill for the Nino3.4 Region
Even though there are indications of temperature skill improvements in the tropical Pacific at lead years
2–5 (Figure 1), the skill itself passes the significance test only in few places from the EnKF and FAI (Figure
S1). As the equatorial Pacific Ocean is characterized by strong interannual variability, we consider whether
the test suite also shows improvement for this timescale. The El Niño-Southern Oscillation (ENSO) is the
dominant source of predictability at seasonal-to-interannual timescales. Various studies report that surface
temperature anomalies in the tropical Pacific associated with ENSO have prediction skill up to one lead year
(Kumar et al., 2017, and the references therein).
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Figure 4. Time series of SST anomalies (◦C) averaged over the Nino 3.4 region (5◦ S–5◦ N and 170–120◦ W) from
HadISST1.1 (red) and the ensemble mean hindcasts at lead year 1 (blue). Shaded is the range between the minimum
and maximum ensemble members. Empty (filled) circles indicate even (odd) years. ACC is the anomaly correlation
coefficient and RMSE is the root mean squared error for the ensemble mean hindcasts which are initialized over the
period 1961–2015. STDobs represents variability in the observational data set (in ◦ C). ACCsign95% gives a threshold
for significant correlation coefficients. It is assessed using the t test at 5% level, using the autocorrelation of the time
series to estimate the degrees of freedom. SST = sea surface temperature; Preop-LR = preoperational MiKlip prediction
system in low-resolution configuration.

We show sea surface temperature (SST) time series of the Nino3.4 region for the first lead year in Figure 4.
Though visually Preop-LR seems to follow closely HadISST1.1, the correlation coefficient amounts only
to 0.56. Initialized hindcasts seem sometimes to lag the verification data set by 1 year. MODINI, which
specifically targets to improve skill in the equatorial Pacific, shows larger amplitude of the ocean surface
temperature response as compared to other procedures. Here and in the next section, we prefer to show the
accuracy skill in terms of the root-mean-square error (RMSE) rather than MSE, as the former has same units
as the variable shown in the time series. Also, to get an impression about the tolerable range of RMSE, it is
compared with the standard deviation in the time series of the verification data set (STDobs). Overall, the
range of correlation coefficients varies from 0.42 to 0.65. The correlation coefficients are higher and RMSE
are smaller than in Preop-LR for FAI, the EnKF, and the EDF, whereas the reverse is true, that is, the skill
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Figure 5. Same as in Figure 4 for the North Atlantic subpolar gyre (SPG) SAT in degrees Celsius (50–60◦ N and 65◦
W–10◦ E) from HadCRUT4 (red) and the ensemble mean hindcasts at lead year 1 (blue) initialized over the period
1961–2015. SAT = surface air temperature; Preop-LR = preoperational MiKlip prediction system in low-resolution
configuration.

is worse than in Preop-LR for BV and MODINI. This result shows a potential for the former methods at
improving initialization of seasonal-to-interannual forecasts.

3.3. Skill for the North Atlantic Ocean
The North Atlantic SPG is one of the key regions where initialization brings the most of improvements for
the prediction skill at decadal timescales (Hermanson et al., 2014; Kröger et al., 2018; Yeager & Robson,
2017). We analyze the time series of SAT and HC700 for the North Atlantic SPG (50–60◦ N and 65◦ W–10◦ E).
Here we use the same region as in Kröger et al. (2018) to enable comparison with previous MiKlip systems.
At lead year 1, Preop-LR shows rather high correlation for the SPG SAT, with the smallest RMSE that cannot
be beaten by the other test-suite experiments (Figure 5).

For lead years 2–5, correlation coefficients for the SPG SAT from the test-suite experiments range from 0.80
to 0.90 (Figure 6). Preop-LR shows a correlation value of 0.85. The FAI hindcasts follow closely the trend
from historical simulations (not shown); also, the multidecadal variability in FAI is smaller than in the
other initialized experiments. The variability from MODINI, evolving on top of the upward trend, provides
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Figure 6. Same as in Figure 4 for the North Atlantic SPG SAT in degrees Celsius from HadCRUT4 (red) and the
ensemble mean hindcasts at lead years 2–5 (blue) initialized over the period 1960–2011. The 4-year running mean is
applied to the HadCRUT4 data. Preop-LR = preoperational MiKlip prediction system in low-resolution configuration;
SPG = =subpolar gyre; SAT = surface air temperature.

relatively high correlation skill. The EnKF overestimates the SPG SAT changes in the 1970s and the 2000s.
Overall, EnKF, BV, and EDF slightly increase correlation for the North Atlantic SPG SAT as compared to
Preop-LR.

Previous MiKlip systems showed some disagreements in the prediction skill over the North Atlantic SPG
(based on full field vs. anomaly initialization methods; Marotzke et al., 2016). Later, Kröger et al. (2018)
demonstrated that this region is sensitive to the initialization strategy and initial conditions which can cause
an initialization shock of different extent. The authors also suggest that, in the case of a severe initialization
shock, the problem can be detected in the assimilation run alone by analyzing time series of the regional
ocean heat budget. In the first lead year, all the test-suite hindcasts demonstrate a cooling trend before the
1990s and a warming trend thereafter suggesting realistic HC700 changes (not shown). For lead years 2–5
(Figure 7), all but the EnKF underrepresent the 1970s cooling. The EnKF simulates stronger variability than
what is shown in the verification data set. FAI shows variations evolving on top of the upward trend, which
is similar to the trend of historical simulations (not shown). MODINI shows large RMSE and no correlation
for the SPG HC700 but, with a lag of about 3 years, has an evolution similar to the NOAA/NODC product
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Figure 7. Time series of the North Atlantic SPG HC700 (1e+21 J) from NOAA/NODC (red) and the initialized
hindcasts at lead years 2–5 (blue). In bold solid is the ensemble mean and shading indicates the range of the ensemble
members. ACC is the anomaly correlation coefficient and RMSE is the root mean squared error for the ensemble mean
initialized hindcasts started over the period 1960–2011. The 4-year running mean is applied to the NOAA/NODC data.
STDobs represents variability in the observational data set. ACCsign95% gives a threshold for significant correlation
coefficients; it is estimated using the t test at 5% level, using the autocorrelation of the time series to estimate the
degrees of freedom. SPG = subpolar gyre; Preop-LR = preoperational MiKlip prediction system in low-resolution
configuration; HC700 = ocean heat content in the upper 700 m.

with cooling in the 1970s and warming after 2000. Preop-LR and the EDF and to a smaller extent BV and
FAI show a “spike” around 2005. A similar spike is also present in the study by Marotzke et al. (2016) for sea
surface temperature and by Kröger et al. (2018) for HC700 for the previous MiKlip systems. It comes from
hindcasts started in 2000 and 2001. For these initialization cases, the BV and FAI hindcasts show cooler
SPG HC700 than in the verification data set, and Preop-LR and the EDF show a decrease of the SPG HC700
(Figure S3). The EnKF hindcasts show an increase in HC700 for these start cases. Since Preop-LR, the EDF,
the BV, and FAI are built on the ORAS4 anomaly nudging; in contrast to the EnKF and MODINI, this outlier
event might be associated with the ORAS4 ocean initialization.

The AMOC variability is one of the important mechanisms for climate variability over the Atlantic Ocean
and Europe (e.g., Delworth et al., 2007; Griffies & Bryan, 1997). Smith et al. (2013) show that some initial-
ization approaches used for decadal predictions can distort the AMOC evolution. This could in turn reduce
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Figure 8. The time series of the Atlantic meridional overturning circulation
(in SV) at 26.5◦ N latitude 1,000-m depth from the initialized hindcasts
(Preop-LR = black, the EnKF = blue, the BV =yellow, FAI = cyan,
MODINI = magenta, and the EDF = green) in the first (upper panel) and
fifth (lower panel) lead years and the uninitialized historical simulation
(green dashed), the ORAS4 reanalysis (red dashed), and the RAPID
observations (red solid). EDF = ensemble dispersion filter; FAI = filtered
anomaly initialization; BV = bred vector; EnKF = ensemble Kalman filter;
Preop = preoperational MiKlip prediction system.

the skill of other climate variables such as sea surface temperature. We
analyze the time series of the AMOC at 26.5◦ N latitude (Figure 8). For
all but the EnKF and MODINI experiments, ORAS4 is the source of the
initial states. The ORAS4 AMOC is 3 SV weaker than that of the test
suite experiments and has a very strong downward trend. Balmaseda et
al. (2013) also suggest that the AMOC in ORAS4 is substantially lower
than in the observational data set RAPID. The EnKF shows a somewhat
weaker AMOC than the other experiments but comparable magnitude of
variability and a slight downward trend. MODINI shows a comparable
magnitude of interannual variability and, in contrast to other experi-
ments, a decrease of the AMOC before the 1990s and an increase there-
after. The AMOC from Preop-LR, the BV, and the EDF evolves closely in
lead year 1. They adopted the major decadal variability and the down-
ward trend from ORAS4. These are the experiments that share the same
assimilation run. FAI and the historical simulations show less temporal
variability in the ensemble mean than the other experiments. The his-
torical simulations by design are not constrained with the observational
estimates of ocean and atmosphere state parameters. And it seems that
FAI in the North Atlantic does not sufficiently constrain the ocean state
either. This variety of results shows once again how sensitive hindcasts
are in this region to initialization strategies.

With the increased lead time (lead year 5 in lower panel in Figure 8),
all the test-suite experiments show less trend and less variability for
the ensemble mean AMOC (also in the basin-wide AMOC variability in
Figure S5). The EDF and Preop-LR show some intensification of vari-
ability after 1990. In terms of the basin-wide long-term mean, AMOC,
Preop-LR, the BV, FAI, and MODINI show similar AMOC structure
including deep-water and bottom-water cells (Figure S4). The EnKF and
the EDF somewhat deviate from the expected structure: The EnKF shows
a North Atlantic overturning cell that extends to the ocean bottom. For
EDF, the deep-water cell is fractured into isolated cells, which extend to
the ocean bottom (Figure S4).

We do not estimate any prediction skill for AMOC as observational record appears to be too short/sparse for
a robust skill assessment. Also, the ORAS4 ocean reanalysis used in this study is not an original source of
initial states for all of the test-suite experiments, in order we could use it as the verification data set. Rather,
the current AMOC analysis is carried out to make sure that new initialization methods do not disturb the
overturning circulation into an unusual state. In fact, it shows that (i) the basin-wide AMOC mean differs
in EDF and EnKF from that in other test-suite experiments and (ii) the test-suite experiments seem to result
in a variety of variability patterns with different strength of variance, which at 26.5◦ N latitude tends to
decrease to the level of historical simulation by lead year 5.

3.4. Ensemble Spread Performance
The spread-to-error diagnostic, which is commonly used to test ensemble spread in predictions, suggests
that Preop-LR and the test suite largely underestimate the spread of surface temperature at the beginning
of the forecast (lead year 1; Figure S6). The advanced ensemble generation methods such as BV and EnKF
increase the first-year spread along the western-boundary currents and the extratropics. MODINI increases
the spread in the North Atlantic as compared to Preop-LR. The EnKF seems to generate too large spread,
which remains excessive for the later lead years, especially in the extratropics. FAI does not have impact on
the first-year spread but has smaller RMSE than Preop-LR. The EDF by design reduces spread, but the RMSE
is close to that of Preop-LR. For later lead times, the spread approaches the level of the errors; this feature
is common to all the initialized hindcasts in the test suite (lead year 5, Figure S7) except in the EDF. As the
spread grows and catches up with the errors, the spread-to-error ratio approaches optimal (∼1) values. At
the same time, we know that the prediction skill diminishes with lead time. In the following, we attempt to
interpret spread skill and prediction skill in parallel.
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Figure 9. Correlation (rHO × |rHO|; first column) and sharpness (p, second column) according to the decomposition of
ESS (third column) for standardized surface air temperature at lead years 2–5 from Preop-LR and the test-suite
experiments. Skill is assessed w.r.t. HadCRUT4 for hindcasts initialized from 1960 to 2011. Stippling on correlation
patterns indicates statistical significance at the 95% confidence level. ESS = ensemble spread score; Preop =
preoperational MiKlip prediction system; EnKF = ensemble Kalman filter; BV = bred vector; FAI = filtered anomaly
initialization; EDF = ensemble dispersion filter.
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The ESS for SAT for lead years 2–5 is shown as a function of the correlation skill and the ensemble sharpness
in Figure 9. The ESS and its components are calculated for standardized SAT (subtracting the mean and
dividing by the standard deviation) as only then the ESS can be decomposed into these two terms. The
Preop-LR hindcasts at lead years 2–5 are largely underdispersive (ESS< 1) over the ocean and overdispersive
over some parts of the continents. Over large areas of the ocean, the system is characterized by relatively
high sharpness and high correlation skill. If accurately estimating the first moment rather than the second
moment is higher priority, then an underdispersive ensemble might not be a drawback as long as the system
is characterized by high prediction skill in the region of interest. In Preop-LR, the regions in the central
Pacific and along the western-boundary currents show relatively high sharpness but low prediction skill.
This means that the hindcasts have a relatively high confidence, although they do not predict the events seen
in observations. In the northeast of the North Pacific, Preop-LR has rather low sharpness (high ensemble
variance and low potential predictability) and low prediction skill.

Comparing the ESS and its components for the test suite and for Preop-LR shows that (i) except for the
North Atlantic, the ESS suggests an underdispersive ensemble over the ocean for all test-suite experiments,
(ii) different test-suite experiments modify somewhat sharpness patterns, and (iii) as already described in
section 3.1, significant skill improvements are obtained from several test-suite methods in the North Atlantic
and central and eastern Pacific Ocean. In detail, the spread scores of the test-suite experiments are closer
to optimal values than for Preop-LR in the North Atlantic. In this region, the correlation skill from the test
suite is slightly improved compared to Preop-LR and the sharpness slightly reduced (ensemble variance
increased). The EDF globally and MODINI in the tropics show increased sharpness. The EDF in the cur-
rent setup reduces ensemble spread by design, which might make the method unsuitable for probabilistic
forecasts. However, atmospheric variables such as precipitation and extratropical cyclones, which are not
directly modified by EDF, show ensemble spread comparable to Preop-LR (Kadow et al., 2017). It is expected
that postprocessing or in-run methods using more than one independent bundle of members can improve
temperature spread as compared to the current EDF setup.

Overall, with ESS < 1, the prediction system has larger potential than actual prediction skill
(Glowienka-Hense et al., 2018). This suggests that the initial ensemble spread from the current ensemble
generation methods is too small or that the overconfidence of the prediction system comes from the under-
representation of some real-world processes. The result of ESS > 1 as over some parts of the continents
might suggest noisy system and lack of potential predictability. In addition, as was shown by Marini et al.
(2016), the spread diagnostic can erroneously indicate overdispersiveness for ensemble predictions when
spread skill assessment is carried out with respect to a verification data set with underrepresented variability
resulting for instance from smoothed observations.

The reliability analysis is sensitive to the sample size. We boost the ensemble size for the ESS assessment
through the “multi-initialization” ensemble of the test suite accounting for 50 members (Figure 9). Expect-
edly, the multi-initialization ensemble reduces sharpness and increases the ensemble variance. Interestingly,
the ESS still suggests that over large areas of the ocean, the underdispersiveness remains. The exception
is the North Atlantic, where the ensemble becomes notably overdispersive. The deterministic skill which
is based on the ensemble mean further benefits from the large ensemble: As compared to a 10-member
ensemble of Preop-LR, the multi-initialization ensemble mean shows globally increased correlation skill
with the biggest improvement over the central and eastern Pacific Ocean and reduced MSE with the biggest
improvement over the North Atlantic Ocean (Figure S8).

4. Discussion and Summary
In this paper, through an intercomparison of several initialization and ensemble generation methods, we
intrinsically address challenges that are fundamental for any decadal prediction system:

(i.) Identifying the importance of dynamical consistency for assimilation/initialization methods.
(ii.) Enhancing forecast skill of a predictable component.
(iii.) Quantifying the impact of uncertainties in the ocean initial state on the skill of the prediction system.

To this end, five initialization and ensemble generation methods are investigated with respect to their impact
on the skill of decadal prediction in the framework of the German decadal prediction system “Mittelfristige
Klimaprognose” (MiKlip) in form of its low-resolution configuration (Preop-LR). Three tested methods, the
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ocean EnKF, the FAI, and the initialization using a partially coupled spin-up (MODINI), aim to improve
prediction skill by a dynamically consistent assimilation/initialization. Whereas the EnKF and FAI address
dynamical consistency between the model and the 3-D ocean initial state, MODINI addresses the role of
dynamically balanced initialization at the air-sea interface. The remaining two methods alter the ensemble
generation approach: the EDF shifts the ocean state toward the ensemble mean during model integration.
In contrast, the oceanic BVs perturb the climate state using the fastest growing modes.

(i.) Results presented above suggest that the EnKF shows the highest correlation skill improvements for
SAT predictions. The EnKF skill for the HC700 is ambivalent: high skill in the North Pacific but low
skill in the eastern tropical Atlantic and the Indian Ocean. For the North Atlantic SPG, where previous
MiKlip initialization attempts showed that the prediction system is particularly sensitive to initializa-
tion (Kröger et al., 2018; Marotzke et al., 2016), the EnKF hindcasts are able to capture cooling and
warming periods better than the other methods. However, the EnKF shows too strong variability and
overshoots cooling and warming periods, which results in higher MSE than the other test-suite exper-
iments. Thus, further work would be needed on tuning the EnKF variability. Increasing the horizontal
and vertical localizations in the EnKF assimilation scheme increases spatial distribution of information
from ocean observations. In addition, decreasing observational error increases the impact of observa-
tions in comparison to the background model state. Both these sensitivities can be used to steer the
impact of oceanic observations, at the same time ensuring model stability. However, when increas-
ing localization, the ensemble size has to be increased as well. Another important aspect is treatment
of biases (i.e., difference between model and observations). In this study, no bias correction has been
applied prior to the EnKF analysis. It is thus expected that the EnKF method could further benefit from
the assimilation of unbiased observations and larger localization.
The FAI method improves SAT and HC700 correlation and reduces SAT MSE in the Pacific basin but
apparently filters too much of the variability in the North Atlantic Ocean. In the current experiment, we
consider the explained variance in the filtered initial conditions to be rather low (40%). This may suggest
that modes of variability of the reanalysis are not exactly compatible with the modes from the prediction
system or that they are not yet sufficiently sampled by the available data used to construct the EOFs.
In this respect, FAI might benefit from attempting to capture better the variability modes in the North
Atlantic using a larger EOF basis, using a different weighting method to determine better the structure
of the modes in this region, or using regional (per-basin) EOFs, which have been shown to perform
significantly better in, for example, reconstructing Atlantic sea level variability (Meyssignac et al., 2012)
in comparison to using global EOFs (Carson et al., 2017). Apart from this, the FAI hindcasts show the
highest skill for the ENSO region at interannual timescales which is associated with the improved zonal
momentum balance in the equatorial Pacific as compared to Preop-LR (not shown) and appear to have
a substantial potential for further improvements in the future.
Given that MODINI only uses the wind stress data for initialization, it compares reasonably well with
the other initialization methods that are tested here. This holds especially near the equator where the
Coriolis force goes to 0 and the balance between the pressure gradient and the wind stress is domi-
nant. In terms of SAT, there is some hint of an improvement in the eastern Pacific. However, MODINI
is outperformed in terms of the MSE skill, in particular over the tropics and the North Atlantic. This
contrasts with Thoma et al. (2015), who show that MODINI has considerable potential as an initial-
ization scheme, especially when hindcasting the eastern Pacific, the Pacific Decadal Oscillation, and
global SAT. The relatively poor performance here is found even when considering the same hindcast
period analyzed by Thoma et al. (2015), that is, 1990–2006. The only differences to the previous study
are (i) the wind stress product used for the initialization (they used the NCEP product from Saha et al.,
2010) and (ii) the time period over which MODINI initialization is carried out (here 1961–2011 and in
1980–2006; Thoma et al., 2015). The former points to the sensitivity of decadal hindcasts to the wind
stress product used for initialization (see also Pohlmann et al., 2017). Although beyond the scope of the
present study, it would be interesting to test the improved forcing data set based on ERA-40 described in
Brodeau et al. (2010) for the hindcasts started between 1961 and 2000, where the wind speed is rescaled,
especially in the tropics, using satellite measurements.

(ii.) Enhancing the forecast skill of a predictable component is generally a goal of all initialization meth-
ods. The EDF tested here specifically attempts to improve an ensemble mean prediction by reducing
ensemble spread during integration. This method is an add-on procedure, and thus, its performance
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depends on the underlying initialization strategy (which is, in this study, same as in Preop-LR). For SAT
and HC700, the EDF is largely mimicking Preop-LR, with some improvements in terms of correlation
and MSE skill in the North Atlantic and the central Pacific Oceans. To a certain degree (in particular,
in the North Atlantic), the EDF experiment is able to reproduce the results of the predecessor study
by Kadow et al. (2017), who implemented the EDF with 5 ensemble members and 39 start dates. The
EDF uses an assumption that an ensemble-mean prediction usually has a better skill than individual
realizations; thus by averaging out the noise from the ensemble, the predictable component becomes
more visible. However, the ensemble mean might not be a valid prediction in the sense that it cannot
be compared to the single realization that is represented by observations. In addition, the applicabil-
ity of the method for predicting extreme events is to be demonstrated, as rare extreme events could be
smoothed out by the ensemble averaging. On the other hand, spread adjustment implemented during
integration could be useful for a prediction system that suffers from an overdispersive spread. The EDF
spread could be rescaled in the postprocessing by the calibration techniques. Also, using more than one
independent bundle of members could further be tested to improve the current EDF spread.

(iii.) Two procedures tested here use advanced ocean perturbation methods to account for ocean initial state
uncertainty. The ensemble generation method based on BVs perturbs the ocean state with the fastest
growing modes. The EnKF uses an assimilation ensemble, from which an ensemble of initialized pre-
dictions is started. In the MiKlip system, throughout all the development stages, the ensembles of
decadal predictions were generated by perturbing the initial state using lagged initialization. Though,
several advanced ensemble generation methods based on oceanic singular vectors and anomaly trans-
form have earlier been tested for the MiKlip prediction system by Marini et al. (2016) and Romanova et
al. (2017), respectively. A recent study by Germe et al. (2017) reports that lagging the ocean state by a
few days might not be sufficient to properly represent the ocean initial state uncertainties, especially in
the deep ocean. There has been a discussion that underdispersive ensembles (with an underestimated
spread) lead to overconfident climate predictions indicating a necessity to increase ensemble spread
(Palmer, 2000). Other studies, on the other hand, demonstrate that decadal climate predictions might
only be underdispersive in the first lead years, while thereafter ensembles actually become overdisper-
sive (Ho et al., 2013; Marini et al., 2016). In this respect, the MiKlip prediction system Preop-LR shows
narrow spread at the beginning of surface temperature forecasts, but the ensemble spread grows rela-
tively fast as compared to the RMSE. Both ensemble generation methods, the EnKF and the BV, increase
the spread. However, the EnKF tends to generate too large spread for surface temperature, especially
in the extratropics. The BV in addition shows improvements over Preop-LR regarding the correlation
skill and MSESS for lead years 2–5. In terms of the computational costs, the BV method requires addi-
tional resources for the iterative block, which depends on the number of iterations. A large number of
iterations is required to obtain a good agreement between the BV growth rate and the forecast error,
as shown in the statistical analysis of Yang et al. (2008) for the 1997–1998 El Niño event forecasts. By
contrast, we aim at reduction of the computational costs. One way to reduce the costs is to use orthogo-
nal BV rotation (Wei et al., 2008). In this case, the iterative block could be performed only once for one
BV, and the other perturbation patterns could follow the orthogonalization procedure. The excessive
spread in the EnKF can possibly be adjusted through tuning the spread inflation coefficient.

As large portions of the world ocean including the abyss and ice-covered regions remain coarsely sampled
by observations and sampling prior to the early 2000s was coarser globally, ensemble generation for decadal
predictions is expected to reflect this uncertainty in the ocean initial state. In this respect, the test-suite exper-
iments at the beginning of surface temperature forecasts are largely underdispersive. While ensemble-spread
growth with lead time in decadal predictions might not be an issue as in short-term predictions, where
studies report slower ensemble-spread growth as compared to error growth (Palmer, 2000). For instance,
the ensemble spread in the test-suite temperature predictions for the North Atlantic grows relatively fast.
Another point is that decadal prediction studies, attempting to show usefulness to societal needs, often ana-
lyze “user-relevant” variables like surface temperature and precipitation. For these variables, the spread is
largely dominated by the atmospheric noise (Kleeman et al., 2003; Marini et al., 2016). The deep-ocean per-
turbations at the timescales that are relevant for decadal predictions are likely to have more effect on the
ocean subsurface and the AMOC (Zanna et al., 2011, 2012). But these are the variables for which the decadal
prediction skill is still treated with a special caution as the observational records for them are too sparse or
too short to be used for verification (Karspeck et al., 2015).
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Also, for ensemble reliability diagnostics, the importance of ensemble size should not be forgotten. In
numerical weather predictions, the ensemble consists of about 50 realizations (Bauer et al., 2015), while
decadal predictions are often carried out with 10 or even fewer ensemble members (Taylor et al., 2012). For
decadal predictions, the experimental details are often a compromise between the ensemble size, the num-
ber of initialization dates, the length of the prediction, and recently model resolution. Ferro et al. (2012),
Sienz et al. (2016), Benestad et al. (2017), and Yeager et al. (2018) address this trade-off issue to find solutions
for a more effective use of climate information given limited resources or/and allocating future resources.
These studies suggest that with respect to each of the parameters, a saturation level for prediction skill exists
beyond which we do not necessarily gain new information from, for instance, increasing ensemble size or
model resolution. A recent study by Yeager et al. (2018) suggests that about 20 and more members might
be needed to detect robust differences between initialized and uninitialized hindcasts. Sienz et al. (2016)
and Yeager et al. (2018) point out on the relationship between the optimal ensemble size and signal-to-noise
ratio, meaning that some regions and variables might require larger ensembles. For the EnKF system, a thor-
ough analysis of the unstable-neutral subspace, for example, following Carrassi et al. (2018), would help to
determine the minimum number of ensemble members which has to be used for decadal predictions. Alter-
natively to a large ensemble from a single model, DelSole et al. (2014) explain why multimodel ensembles
might provide a complementary skill to that obtained from a single model. In this study we follow recom-
mendations of Sienz et al. (2016) who advise to use at least 10 ensemble members and a verification period
long enough to capture complete cycle of the decadal variation for decadal prediction experiments.

Overall, the comparison of the test-suite experiments leads to the following conclusions and future work:

• With respect to goals, all test-suite methods address different issues of the prediction system; with respect
to prediction skill, several test-suite methods show added value for skill as compared to the reference
method. As none of the tested methods is superior to others with respect to all points, it appears natural
therefore to attempt to combine several methods in a future attempt to further improve the skill of decadal
predictions.

• Considered advancements in initialization and ensemble generation show potential to further improve the
prediction skill of the reference Preop-LR system for SAT and HC700 at lead years 1 and 2–5 in the central
and eastern Pacific Ocean and the North Atlantic Ocean.

• It is expected that coupled data assimilation is a potential solution that combines improving dynamical
consistency between model and initial state as well as balanced initialization between model components
(Penny & Hamill, 2017). Although assimilation in Preop-LR and the test suite is carried out within the cou-
pled framework, dynamical consistency in the initialized experiments is still not guaranteed. The EnKF
is the first attempt to initialize the predictions within the MiKlip system with the native data assimilation
system. We recall that the EnKF is the only method here that assimilates ocean temperature and salin-
ity profiles directly into the prediction system, while still nudging the atmospheric reanalysis. While the
EnKF allows for the transfer of atmospheric information into the ocean, it also may introduce biases from
the atmospheric reanalysis. All the other initialization methods utilize ocean and atmosphere reanalyses
obtained with a different model than that used for predictions. MODINI assimilates atmospheric vari-
ability from the reanalysis into the ocean model by partial coupling. The EnKF and FAI show the largest
differences in the performance to the rest of the methods, both show benefits and pitfalls, and are attractive
with respect to tackling model consistency. Linking statistical improvements from these methods to con-
crete physical improvements is still needed to better understand their performance. Currently, the EnKF
is being further tested for a potential implementation in the operational MiKlip system.

Appendix A: ESS Derivation
ESS dependence on Pearson's anomaly correlation and sharpness in terms of analysis of variance is described
in detail by Glowienka-Hense et al. (2018). Thus, the ESS can be rationalized as an analytic function of
the correlation coefficient and the common variance of the ensemble members. The total variance in the
ensemble predictions over the whole verification period for a particular lead time can be expressed as

𝜎2
t = 1

M · T

T∑
t=1

M∑
i=1

(Hit − H00)2 = 𝜎2
e + 𝜎2

a , (A1)

where index t = 1...T stands for the time point in the verification interval, and i = 1...M represents the
ensemble members of the test-suite experiment. Index 0 indicates that the variable represents the average
value, either over ensemble members or over the verification interval, or over both (index 00).
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The mean of the ensemble variance over the verification interval is calculated as

𝜎2
e = 1

M · T

T∑
t=1

M∑
i=1

(Hit − H0t)2, (A2)

and the variance of the ensemble mean predictions is

𝜎2
a = 1

T

T∑
t=1

(H0t − H00)2. (A3)

As model sharpness is associated with potential predictability, we use notation p for the former term.
Glowienka-Hense et al. (2018) use the notation ANOVA for p. Further derivations based on the terms pre-
sented above allow finding an expression for the common variance of the ensemble members, p, and mean
squared error, MSE:

MSE = 1
T

∑T
t=1 (H0t − Ot)2 = 𝜎2

a + 𝜎2
o − 2 · rHO · 𝜎o · 𝜎a + (H00 + O0)2,

p = 𝜎2
a

𝜎2
t
= 𝜎2

t −𝜎
2
e

𝜎2
t

= 1 − 𝜎2
e

𝜎2
t
,

(A4)

where 𝜎2
o represents variability in the time series of the verification (observational) data set and O0 represents

the long-term mean value.

Standardizing variables with the total long-term mean H00 and O0 and variances 𝜎2
t and 𝜎2

o results in Ĥ and
Ô with

Ĥ00 = Ô0 = 0,
𝜎2

t (Ĥ) = 𝜎2
O(Ô) = 1,

𝜎2
e (Ĥ) = 1 − p,

MSE(Ĥ,Ô) = p + 1 − 2 · rHO ·
√

p.

(A5)

Finally, ESS for the normalized variable can be found as

ESS =
𝜎2

e

MSE
=

1 − p
p + 1 − 2 · rHO ·

√
p
. (A6)

In this relationship, the lower values of sharpness, p, correspond to a broader band of acceptable balance
between model and observations. Whereas, to achieve same statistical balance with higher values of sharp-
ness, closer correspondence between rHO and p is required. If ESS < 1, the prediction system has higher
potential than actual prediction skill. If ESS > 1, the prediction system is overdispersive. The approxima-
tion based on second moment is sensitive to sample size and is valid for large values of T and M. Otherwise,
correction factors for sampling should be used as, for example, in studies by Ho et al. (2013), Fortin et al.
(2014), and Sospedra-Alfonso et al. (2016). More detail on the ESS dependence on correlation and sharpness
are given by Glowienka-Hense et al. (2018).
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