200 research outputs found

    Dr. Bert Beach

    Get PDF

    Branonium

    Full text link
    We study the bound states of brane/antibrane systems by examining the motion of a probe antibrane moving in the background fields of N source branes. The classical system resembles the point-particle central force problem, and the orbits can be solved by quadrature. Generically the antibrane has orbits which are not closed on themselves. An important special case occurs for some Dp-branes moving in three transverse dimensions, in which case the orbits may be obtained in closed form, giving the standard conic sections but with a nonstandard time evolution along the orbit. Somewhat surprisingly, in this case the resulting elliptical orbits are exact solutions, and do not simply apply in the limit of asymptotically-large separation or non-relativistic velocities. The orbits eventually decay through the radiation of massless modes into the bulk and onto the branes, and we estimate this decay time. Applications of these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP

    Social Science and Neuroscience beyond Interdisciplinarity: Experimental Entanglements

    Get PDF
    This article is an account of the dynamics of interaction across the social sciences and neurosciences. Against an arid rhetoric of ‘interdisciplinarity’, it calls for a more expansive imaginary of what experiment – as practice and ethos – might offer in this space. Arguing that opportunities for collaboration between social scientists and neuroscientists need to be taken seriously, the article situates itself against existing conceptualizations of these dynamics, grouping them under three rubrics: ‘critique’, ‘ebullience’ and ‘interaction’. Despite their differences, each insists on a distinction between sociocultural and neurobiological knowledge, or does not show how a more entangled field might be realized. The article links this absence to the ‘regime of the inter-’, an ethic of interdisciplinarity that guides interaction between disciplines on the understanding of their pre-existing separateness. The argument of the paper is thus twofold: (1) that, contra the ‘regime of the inter-’, it is no longer practicable to maintain a hygienic separation between sociocultural webs and neurobiological architecture; (2) that the cognitive neuroscientific experiment, as a space of epistemological and ontological excess, offers an opportunity to researchers, from all disciplines, to explore and register this realization

    Mineral Preservatives in the Wood of Stradivari and Guarneri

    Get PDF
    Following the futile efforts of generations to reach the high standard of excellence achieved by the luthiers in Cremona, Italy, by variations of design and plate tuning, current interest is being focused on differences in material properties. The long-standing question whether the wood of Stradivari and Guarneri were treated with wood preservative materials could be answered only by the examination of wood specimens from the precious antique instruments. In a recent communication (Nature, 2006), we reported about the degradation of the wood polymers in instruments of Stradivari and Guarneri, which could be explained only by chemical manipulations, possibly by preservatives. The aim of the current work was to identify the minerals from the small samples of the maple wood which were available to us from the antique instruments. The ashes of wood from one violin and one cello by Stradivari, two violins by Guarneri, one viola by H. Jay, one violin by Gand-Bernardel were analyzed and compared with a variety of commercial tone woods. The methods of analysis were the following: back-scattered electron imaging, X-ray fluorescence maps for individual elements, wave-length dispersive spectroscopy, energy dispersive X-ray spectroscopy and quantitative microprobe analysis. All four Cremonese instruments showed the unmistakable signs of chemical treatments in the form of chemicals which are not present in natural woods, such as BaSO4, CaF2, borate, and ZrSiO4. In addition to these, there were also changes in the common wood minerals. Statistical evaluation of 12 minerals by discriminant analysis revealed: a. a difference among all four Cremona instruments, b. the difference of the Cremonese instruments from the French and English antiques, and c. only the Cremonese instruments differed from all commercial woods. These findings may provide the answer why all attempts to recreate the Stradivarius from natural wood have failed. There are many obvious implications with regard to how the green tone wood should be treated, which chould lead to changes in the practice of violin-making. This research should inspire others to analyze more antique violins for their chemical contents

    The Germinal Center Kinase GCK-1 Is a Negative Regulator of MAP Kinase Activation and Apoptosis in the C. elegans Germline

    Get PDF
    The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
    • …
    corecore