226 research outputs found
Seismic Reflection Imaging of the Low-Angle Panamint Normal Fault System, Eastern California
Shallowly dipping (<30°) low-angle normal faults (LANFs) have been documented globally; however, examples of active LANFs in continental settings are limited. The western margin of the Panamint Range in eastern California is defined by a LANF that dips west beneath Panamint Valley and has evidence of Quaternary motion. In addition, high-angle dextral-oblique normal faults displace middle to late Quaternary alluvial fans near the range front. To image shallow (<1 km depth), crosscutting relationships between the low- and high-angle faults along the range front, we acquired two high-resolution P wave seismic reflection profiles. The northern, 4.6-km-long profile crosses the 2-km-wide Wildrose graben and the southern, 0.8-km-long profile extends onto the Panamint Valley playa, ~7.5 km S of Ballarat, CA. The profile across the Wildrose graben reveals a robust, low-angle reflector interpreted to represent the LANF separating Plio-Pleistocene alluvial fanglomerate and Proterozoic metasedimentary deposits. High-angle faults interpreted in the seismic profile correspond to fault scarps on Quaternary alluvial fan surfaces. Interpretation of the reflection data suggests that the high-angle faults vertically displace the LANF up to 80 m within the Wildrose graben. Similarly, the profile south of Ballarat reveals a low-angle reflector, which appears both rotated and displaced up to 260 m by high-angle faults. These results suggest that near the Panamint range front, the high-angle faults are the dominant active structures. We conclude that at least at shallow (<1 km) depths, the LANF we imaged is not active today
Mass Sport Through Education or Elite Olympic Sport?
xxi, 274 hlm,; ilus.; 25 cm
Do Cosmological Perturbations Have Zero Mean?
A central assumption in our analysis of cosmic structure is that cosmological
perturbations have zero ensemble mean. This property is one of the consequences
of statistically homogeneity, the invariance of correlation functions under
spatial translations. In this article we explore whether cosmological
perturbations indeed have zero mean, and thus test one aspect of statistical
homogeneity. We carry out a classical test of the zero mean hypothesis against
a class of alternatives in which perturbations have non-vanishing means, but
homogeneous and isotropic covariances. Apart from Gaussianity, our test does
not make any additional assumptions about the nature of the perturbations and
is thus rather generic and model-independent. The test statistic we employ is
essentially Student's t statistic, applied to appropriately masked,
foreground-cleaned cosmic microwave background anisotropy maps produced by the
WMAP mission. We find evidence for a non-zero mean in a particular range of
multipoles, but the evidence against the zero mean hypothesis goes away when we
correct for multiple testing. We also place constraints on the mean of the
temperature multipoles as a function of angular scale. On angular scales
smaller than four degrees, a non-zero mean has to be at least an order of
magnitude smaller than the standard deviation of the temperature anisotropies.Comment: 31 pages, 4 tables, 6 figure
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Towards an understanding of unique and shared pathways in the psychopathophysiology of AD/HD
Most attention deficit hyperactivity disorder (ADHD) research has compared cases with unaffected controls. This has led to many associations, but uncertainties about their specificity to ADHD in contrast with other disorders. We present a selective review of research, comparing ADHD with other disorders in neuropsychological, neurobiological and genetic correlates. So far, a specific pathophysiologicalpathway has not been identified. ADHD is probably not specifically associated with executive function deficits. It is possible, but not yet established, that ADHD symptoms may be more specifically associated with motivational abnormalities, motor organization and time perception. Recent findings indicating common genetic liabilities of ADHD and other conditions raise questions about diagnostic boundaries. In future research, the delineation of the pathophysiological mechanisms of ADHD needs to match cognitive, imaging and genetic techniques to the challenge of defining more homogenous clinical groups; multi-site collaborative projects are needed. © Blackwell Publishing Ltd
A dynamic neural field approach to natural and efficient human-robot collaboration
A major challenge in modern robotics is the design of autonomous robots
that are able to cooperate with people in their daily tasks in a human-like way. We
address the challenge of natural human-robot interactions by using the theoretical
framework of dynamic neural fields (DNFs) to develop processing architectures that
are based on neuro-cognitive mechanisms supporting human joint action. By explaining
the emergence of self-stabilized activity in neuronal populations, dynamic
field theory provides a systematic way to endow a robot with crucial cognitive functions
such as working memory, prediction and decision making . The DNF architecture
for joint action is organized as a large scale network of reciprocally connected
neuronal populations that encode in their firing patterns specific motor behaviors,
action goals, contextual cues and shared task knowledge. Ultimately, it implements
a context-dependent mapping from observed actions of the human onto adequate
complementary behaviors that takes into account the inferred goal of the co-actor.
We present results of flexible and fluent human-robot cooperation in a task in which
the team has to assemble a toy object from its components.The present research was conducted in the context of the fp6-IST2 EU-IP
Project JAST (proj. nr. 003747) and partly financed by the FCT grants POCI/V.5/A0119/2005 and
CONC-REEQ/17/2001. We would like to thank Luis Louro, Emanuel Sousa, Flora Ferreira, Eliana
Costa e Silva, Rui Silva and Toni Machado for their assistance during the robotic experiment
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Immunology of multiple sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by meningeal lymphoid follicles with germinal centers
- …