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Abstract A major challenge in modern robotics is the design of automasrobots
that are able to cooperate with people in their daily tasks luman-like way. We
address the challenge of natural human-robot interactgnssing the theoretical
framework of dynamic neural fields (DNFs) to develop protesarchitectures that
are based on neuro-cognitive mechanisms supporting huomginajction. By ex-
plaining the emergence of self-stabilized activity in ranal populations, dynamic
field theory provides a systematic way to endow a robot witttied cognitive func-
tions such as working memory, prediction and decision ngakirhe DNF architec-
ture for joint action is organized as a large scale netwonleciprocally connected
neuronal populations that encode in their firing patterreciic motor behaviors,
action goals, contextual cues and shared task knowledgmadigly, it implements
a context-dependent mapping from observed actions of theahwonto adequate
complementary behaviors that takes into account the idlegoal of the co-actor.
We present results of flexible and fluent human-robot codjoeran a task in which
the team has to assemble a toy object from its components.

1 Introduction

Recent advances in robotics technology make the design dillsointeractive

robots that work closely with ordinary people in their dayday work a realistic
goal (Fong et al., 2003). Research in such human-centebedice requires to ad-
dress a wealth of new interdisciplinary topics from cogmitpsychology, artificial
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intelligence and neuroscience that go well beyond tradtionathematical issues
of robotics research for industrial applications (Sch2@07). As fundamentally so-
cial beings, we are experts in joint activity in order to izala common goal. We
therefore have high expectancies about an engaging ansbpleiateraction with
another agent. Humans achieve their remarkable fluent atéon of joint activity
in routine tasks, such as preparing the dinner table, byirmootisly monitoring the
partner’s actions, and predicting them effortlessly imterof their outcomes (Se-
banz et al., 2006). Based on this prediction, an adequatpleomentary action can
be timely selected among all potential behaviors that thke tarrrently affords. To
ensure user acceptance, a socially interactive robotsteatpposed to substitute a
human in a cooperative task should equally contribute t@tiedination and syn-
chronization of behaviors among the co-actors. It is thusiat to endow the robot
with high-level cognitive functions such as action undamsiing, decision making
and memory.

Given the large variety of disciplines involved in the eniegifield of human-
friendly robotics, it is perhaps not surprising that diéfiet design approaches toward
more natural human-robot interaction have been proposacéptually, they may
be broadly classified in top-down, symbolic views on hunika-(social) intelli-
gence and more bottom-up, neurodynamics and embodiechsdtimzma, 2008).
The predominant top-down approach is inspired by traditiartificial intelligence
(Al) models that address the complex problem of selectingdiguate complemen-
tary behavior as a sequence of logical operations perfownediscrete symbols.
The robotics implementations are thus based on formal lagitformal linguistic
systems (Levesque and Lakemeyer, 2008). Good exampleshieatures inspired
by the theoretical framework of joint intention theory (@whand Levesque, 1990;
Alami et al., 2005; Hoffman and Breazeal, 2007). This fraroeprovides a rigor-
ous logical treatment of how sub-plans of individual ageotamitted to a common
task can be meshed into joint activity. A defining featurehaf $ymbolic approach
is that information processing is set up in stages from gei@e to cognition to
action. A perceptual subsystem first converts sensory rimdtion about external
events into inner symbols to represent the state of the widddt, this information
is used along with representations of current goals, marsaf past events and
beliefs about the partner’s intention to decide about thesm of action. On this
planning level, actions are formulated as logical opegtath preconditions and
effects that change the world in a discrete fashion andritesteeously. The abstract
plan is then transformed into motor representations of thetics system that are
finally used to generate arm and hand trajectories in orderdiize the plan.

The symbolic, disembodied view on how to decide what to dghagded many
impressive examples of intelligent behaviors in artificigents (for review see Ver-
non et al. (2007)). However, it is now widely recognized bg tbbotics and cog-
nitive science communities that the symbolic frameworkelasn serial stages of
processing has notoriously problems to cope with real-titeractions in dynamic
environments (Haazebroek et al., 2011; Levesque and Laleam2008; Kozma,
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2008). In human-robot interaction tasks, the robot hasdsar about a world that
may change at any instance of time due to actions taken byshe Hven if we
consider that the processing in the perceptual and decmsimdules would allow
to continuously update the robot’s plan in accordance wighuser’s intention, the
extra processing step needed to embody the abstract atdioinghe autonomous
robot would challenge the fluent and seemingly effortlessdimation of decisions
and actions that characterize human joint action in famiéiaks.

In order to advance toward a more online view of high-leveliaocognition,
our group at the University of Minho has developed and teetet the last cou-
ple of years a neurodynamics approach based on the thedfesimework of Dy-
namic Neural Fields (DNF)(Erlhagen and Bicho, 2006). TheFDhbdel for natural
human-robot interaction that we present in this chaptetempnts known neuro-
cognitive processing mechanisms supporting dynamic lotéactions in humans
and other primates (Sebanz et al., 2006). Converging lihesperimental evidence
in behavioral and neuro-cognitive studies suggest thaintikeeaction between sen-
sory, cognitive and motor processes in the brain is much nmdegactive and in-
tegrated as previously thought. For instance, neural lade® of decision making
seem to be inconsistent with the notion that a central datisiaker completes its
operation before activating the motor structures to perfthhe action plan (Gold
and Shadlen, 2007). Instead, the process of action seleotiy be best understood
as a winner-takes-all competition between multiple nearpopulation representa-
tions of motor behaviors that the environment currentlpiafé (Cisek, 2007). The
advantage of such a dynamic competition process for flexiblavior is obvious.
Since the flow of sensory information is continuously usepadially specific sev-
eral potential actions, the system is prepared to quickiiysido a changing world.
Different neural pathways carrying different sources éimation demonstrate the
tight coupling between visual and motor systems (for re\see/Rizzolatti and Lup-
pino (2001)). For instance, according to the concept ofailgfordances (Gibbson,
1979), the perception of a graspable object immediatelyatet to some extent the
neuronal representations of potential motor interactigitis that object. The final
decision to execute a certain action, represented by aisulffi¢ activated subpop-
ulation, may depend on additional contextual cues and thrertbehavioral goal.
Very important for social interactions, an impressive boflgxperimental evidence
from behavioral and neurophysiological studies invesitiggaction and perception
in a social context shows that when we observe other’s aettiorresponding mo-
tor representations in our motor system become activateda(fecent review see
Rizzolatti and Sinigaglia (2010)). In a cooperative joigtian context like trans-
ferring an object to a partner, this automatic action resoaanechanism has been
interpreted as evidence that the likelihood of performingpenplementary motor
program is increased, that is, the receiver’ immediateBpares a complementary
grasping behavior that ensures a safe and robust objesfdérgiNewman-Norlund
etal., 2007). For more complex joint action settings forebithe mapping from ob-
served actions onto adequate complementary behaviors$ &srbear, the observer
has first to predict the partner’s ongoing action in termsheffuture effects in the
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environment. The action resonance mechanism is believagpjoort also the high-
level cognitive functionality of action understanding agwhl inference (Rizzolatti

and Sinigaglia, 2010). The key idea here is that the obserienally simulates the

outcome of perceived actions using his/her own motor remtasions that have be-
come associated with representations of action goals gligarning and practice.
The notion that motor representations are crucially inedlin a higher-cognitive

function like generating expectations about the futureléarty inconsistent with

serial information processing theories of cognitive bébrav

The DNF model of cooperative joint action is organized aggeacale network
of reciprocally connected neuronal populations that eadadheir firing patterns
specific motor behaviors, action goals, contextual cuesshaded task knowledge
(Bicho et al., 2011a,b). Although some level of functionadularity exists in the
network, it is important to notice that the formation and meanance of a behavioral
decision is not represented in the discharge pattern ofdfaeurons alone, but is
distributed among all currently active populations in tle¢work.

The activity in each local population evolves continuousiytime under the in-
fluence of external input from connected neuronal pools esnsory system and
recurrent excitatory and inhibitory interactions withiretpopulation. Central for the
design of cognitive agents, the recurrent interactiongasttpghe existence of self-
sustained bumps of activation. Persistent populatiowigictillows us for instance
to implement a working memory function in the robot to coptvemporally miss-
ing sensory information, or to simulate future environnagémputs that may inform
the current decision process about a goal-directed behéwithagen and Bicho,
2006).

As a specific mathematical formulation of a DNF, we adopt Aitmanodel for pat-
tern formation in neural populations since it allows ariablttreatment (Amari,
1977). This is an important advantage when trying to desigoraplex robot con-
trol architecture for real-world experiments.

The chapter is organized as follows: first, we give an ov@ngbout the neuro-
cognitive foundations of the DNF model and describe its matitical implemen-
tation. We then illustrate the coordination of actions aadisions between human
user and robot organized by the network dynamics in a joitibadask in which
the two teammates have to jointly assemble a toy object ftemoimponents.

2 Dynamic Neural Field Model of Joint Action

As a working definition, joint action can be regarded as amgnfof social interac-

tion whereby two or more individuals coordinate their agtion space and time to
bring about a change in the environment. Crucial buildirgks for successful joint
action coordination are the capacities to recognize ast@nformed by others, and
to integrate predicted effects of own and others’ behaviotbe action selection
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process (Sebanz et al., 2006). What are the neural baseficadrafsocial interac-
tions? The discovery of the so-called mirror neuron systeshifi monkey and later
in human gives strong support for the hypothesis that olisgections performed
by another individual elicit a motor activation in the braifithe observer similar to
that which occurs when the observer plans his/her own goattéd action (for a
recent review see Rizzolatti and Sinigaglia (2010). Thisanatic action resonance
mechanism has given rise to the hypothesis that covert nsotarlations support
action understanding in a social context without the cdsts are associated with
conscious mental processes or explicit communication.

Mirror neurons in premotor cortex of monkeys (area F5) bexzantive both when
the monkey performs a specific motor act like grasping anablgjed when it ob-
serves another individual making a similar action. Impatftafor most mirror neu-
rons the congruency between the observed and the executedaxbis relatively
broad. This suggests that their discharge is not relatdubtfirte details of the move-
ments but codes the goal of the observed or executed mot@Iajeict manipulation
tasks typically involve a series of action phases like reagtgrasping, lifting, hold-
ing and placing that are bounded by specific sensory evefitsragsubgoals of the
task (Flanagan et al., 2006). Distinct populations of miimeurons are assumed to
representthe functional goals of these successive adtiasgs. Mirror neurons have
been also described in areas PFG and PF of the inferior pHdbe (IPL). These ar-
eas are anatomically connected with premotor area F5 amdhigiher visual areas
in the superior temporal sulcus (STS). STS neurons disehdugng hand-object
interactions similar to those encoded by F5 neurons. Tierdiice seems to be that
STS neurons do not discharge during overt movements. ST@methus might
provide mirror neurons with a visual description of goaledted motor acts.

The hypothesis that the discharge of neuronal populatiotise STS-PFG/PF-F5
circuit play a key role in action understanding and goalr@fiee has obtained strong
support from a series of neurophysiological experimentsa$ been shown for in-
stance that grasping mirror neurons are activated also Witeearitical part of the
observed action, the hand-object interaction, is hidddingea screen and can thus
only be inferred from additional contextual informationggthe presence of a gras-
pable object behind the occluding surface (Umilta et &101). In a recent study,
Fogassi and colleagues (2005) reported that IPL mirrorareyiin addition to rec-
ognize the goal of an observed motor act, discriminate idaingrasping behaviors
according to the final goal of the action sequence in whiclmtbtor act is embedded
(e.g., grasping for eating versus grasping for placing i@tainer). They further
argued that because the discriminated motor act is partpécifsc chain of motor
primitives associated with a specific goal representatiostriikely in prefrontal
cortex (PFC), the monkey could predict at the time of themjregsthe ultimate goal
of the observed action and, thus read the motor intentiohefitting individual.
Of course, the discrimination of the grasping behavior ity possible because of
an additional contextual cue (e.g., the presence of a cmntai the scene). This
suggest that the simulation process in IPL mirror neurongiexclusively shaped
by input from STS but also depends on input from goal and ¢bggresentations.
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Figure 1 sketches the multi-layered dynamic field model oitjaction consist-
ing of various neural populations that are associated titrdwand-coded synaptic
links (not all are shown to avoid crowding). As a central piaibtegrates a previous
DNF model of action understanding and goal-directed inoiteinspired by the mir-
ror system(Erlhagen et al., 2006). Ultimately, the distiéal network implements a
flexible mapping between observed and executed actiontattes into account the
inferred goal of the co-actor, contextual cues and shasédkiaowledge.

Insert Figure 1 around here

An observed hand movement that is recognized by the visistesyas a particu-
lar movement primitive (e.g. a whole hand-grasping-frorova) is represented by
suprathreshold activity of a specific neuronal populatiothie action observation
layer (AOL). Input from AOL to corresponding populationgire action simulation
layer (ASL) may activate together with input from the objewmory layer (OML)
and the common sub-goals layer (CSGL) specific chains of mewe primitives
that are linked to neuronal representation of the ultimat®a goal in the intention
layer (IL)(Erlhagen et al., 2007). Suprathreshold popateactivity in IL will drive
one or more associated populations in the action execudigr (AEL) that repre-
sent possible complementary motor behaviors. Similar th,Al$e motor behaviors
are organized in chains of motor primitives like reachimgsping-placing. There
are different ways how to represent the temporal order amdirting of motor se-
quences in the dynamic field framework (Ferreira et al., 2@Bhdamirskaya and
Schoner, 2010). To simplify the present robotics expenits&vith its emphasis on
competitive action selection, we have not modeled thesmslas a sequential ac-
tivation of individual neural populations, but represdrd entire motor behavior by
a single pool of neurons. The final decision in AEL dependsombt on the input
from IL but also on input from OML and CSGL. OML contains neoab popula-
tion representations of the various objects in the scem@olganized in two layers
that discriminate whether a specific object is within therissar within the robot’s
reachable space. Input from OML automatically pre-activaiteural representations
of associated motor behaviors in AEL. Specifically for thejassembly task, pos-
sible object-directed behaviors include the transfer efdhject to the co-actor or
a direct placement of the object as part of the assembly vinmkddition, commu-
nicative gestures like for instance pointing to the speciimponent may be used
in joint activity to attract the co-actor’s attention (Bwlet al., 2010). Efficient task
performance requires to carry out the steps in the task irctheect order, with-
out repeating an action or omitting early actions in the sege. This behavioral
planning heavily depends on the predicted consequenceseofded actions (i.e. a
change in the state of the target object (Tanji et al., 200H¢ common subgoals
layer CSGL contains neuronal representation of desiredresults of individual
assembly steps that can be realized by associated motesesyations in AEL and
that are recognized by the vision system. Neurophysio&dgiidence suggests that
in sequential tasks, distinct subpopulations in PFC remtealready achieved sub-
goals and subgoals that have still to be accomplished (Gmnmet al., 2006). In
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line with this finding, CSGL contains two connected DNF |ayeiith population
representations of past and future events. Input from thiervisystem about the
achievement of a specific subgoal activates the correspgpdipulation in the past
layer, which in turn inhibits the corresponding goal repreation and simultane-
ously excites one or more populations in the future layeeyTiepresent in their
activity patterns predicted end result of subsequent dslyesteps that the current
state of the assembly work allows. Important for the fluenfcthe team behavior,
the updating of subgoals in CGSL may not only be triggeredibgctinput from
the vision system but also by input from IL representing thferred motor inten-
tion of the co-actor. This allows the observer to prepareriictions in response
to anticipated rather than observed action outcomes (Bithd, 2011a,b).

3 Model Details

In their seminal work, Wilson and Cowan (1973) and Amari (Z@iitroduced dy-

namic neural fields as rate models of cortical populatioragyics that abstract from
the biophysical details of neural firing. The architectuiréhis model class reflects
the hypothesis that strong excitatory and inhibitory iat¢ions within local popu-

lations that receive synaptic input from multiple conndateuronal pools form a
basic mechanism of cortical information processing. As\sshim numerous simula-
tion studies, dynamic neural field models are powerful ehdogeproduce neural
population dynamics observed in neurophysiological expents (e.g., Erlhagen
et al. (1999)), and to understand the basic mechanismslimglariarge variety of

experimental findings on the perceptual and behavioral (&mereview see Schoner
(2008)).

For the design of the robot control architecture for nattmaihan-robot inter-
actions, we adopt the model of a single layer of a homogeneeusl network
consisting of excitatory and inhibitory neurons proposgdAmari (1977). This
model allows for a rigorous analysis of the existence antuilgtaof characteristics
solutions such as local excitations or “bumps”. In the fwilog, we give a brief
overview about the techniques developed by Amari, and exgiia adaptations we
have made to cope with the specific needs of the robotics mmi¢ations.

The dynamics of each population in the distributed netwbdws in Fig. 1 is gov-
erned by the equation:

T

SUXY _ ixt)+ S(xt)

ot
+ /oow(x—x’)f(u(x’,t))dx’—h 1)

whereu(x;t) is the average activity of neurore (—oo, 4-00) at timet and parameter
T > 0 defines the time scale of the field dynamics. The globallybitdry input
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h > 0 determines the resting state to which the activity of newxreelaxes without
external inpuB(x,t) > 0. The integral term in Eq. 1 describes the interactionsiwith
the populations which are chosen of lateral-inhibitioretyp

W(X) = Aexp(—X°/20%) — Winnib (2)

whereA > 0 ando > 0 describe the amplitude and the standard deviation of a-Gaus
sian, respectively. For simplicity, the long-range intoby interactions are assumed
to be constantwinp > 0, implementing a competition between subpopulations that
are sufficiently separated in space. Note that distinctalgaopulations encoding
entire temporal behaviors like grasping, holding or plg@aem to be spatially seg-
regated in the mirror neuron areas (Rizzolatti and Lupp@@®1). Interpreting the
metric of neural interactions in anatomical space like ingkis original model is
thus possible. However, the metric distance might be al$imetkin an abstract
psychological space (Shepard, 1997). In this case, fumatip distinct behaviors
associated with specific goals would be represented byadlgageparate, compet-
ing pools of neurons whereas similar motor behaviors aatetivith the same goal
(e.g., grasping with different grip types) would be repreed by partially overlap-
ping populations.

Amari assumes for his analysis of pattern formation thattitput functionf (u),whi-

ch gives the firing rate of a neuron with inpwtis the Heaviside step function, i.e.,
f(u) =0 foru <0 andf(u) =1 otherwise. To model a more gradually increasing
impact of the recurrent interactions on the population dyica we apply a smooth
and differentiable output function of sigmoid shape withp& 8 and thresholdig:

1
T 1+exp(—BU—to)

f(u) (3)

It has been shown by Kishimoto and Amari (1979) that many efrésults con-
cerning the existence and stability of localized activiégtprns obtained with a step
output function take over to the more general case of theaigym

The model parameters are chosen to guarantee that the populgnamics is
bi-stable, that is, the attractor state of a stable “bumpéxégis with a stable ho-
mogeneous resting state. A sufficiently strong transigmiti§(x,t) may drive the
neural population beyond thresholdu) > up. The resting state loses stability and
a localized activation pattern evolves. In the various ey the network model,
these bumps represent memorized information about oljeatibn, the inferred
action goal of the co-actor or a decision for a specific completary behavior.
Weaker external input signals from connected populatiead lto a subthreshold
activation pattern for which the contribution of recurrarteractions is negligible.
It is important to note, however, that this preshaping bykiveaut may neverthe-
less influence the robot’s behavior. Since the level of mteation affects the rate
at which a suprathreshold activation pattern rises (Edhagnd Schoner, 2002), a
pre-activated population has a computational advantagespopulation at resting
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level and thus has a higher probability to influence the datigrocess in AEL.
For the case of a step output function, the conditions foettistence and stability
of a single bump in the presence of a stationary externalti8pg can be easily
derived following Amari’s approach. L&(u) = {x|u(x) > 0} be the excited region
of the field. A localized pattern of length= X is then defined by the finite in-
tervalR(u) = (x1,%2). Since at equilibriunds in EQ. 1, the equilibrium solution
G(x) satisfies

auy:/~wu_%nmw¢mw—h+am )
R(0)
By defining the function y
W@:AMMMX 5)
we have for the local excitation witR(u) = (x1,X2)
Gx) =W(x—x1) —W(x—x2) + S(x) —h (6)

SinceW(0) = 0 andW(x) = —W(—x) the equilibrium local excitation with(%;) =
0= ((xp) satisfies:
S(x)=-W(a)+h, i=12 )

For the robotics experiments we are specifically intereistélge existence of local-
ized excitation in response to symmetric, bell-shapedtinpuhis case, the length
a of the bump satisfies

S(x0+a/2) =h—-W(a) (8)
wherexg denotes the position of the maximus(x). If h > 0 is chosen such that
Wi = maxW(x) > h (@
x>0

holds, there exist two solutiomssahda, with 4 < a, of Eq. 7. Amari reduces the neu-
ral field equation to an ordinary differential equation widspect to the boundaries
of the excited region and uses a perturbation approach te 8t only the larger
excitation pattern is stable (for details see Amari (1977))

For the robotics implementations we assume that the timerdimt input from a
connected population; to a target population; has a separable for®(x,t) =
S(x)gj(t) where S(x) is modeled as a Gaussian functiongyid = 1 if f(u;) > up
andgj(t) = 0 otherwise. In other words, a stationary input is appliedrdythe pe-
riod of suprathreshold activity in;. Numerical studies show that the evolving local-
ized activation iruj could have been directly used as input pattern as well. Hewev
assuming a constant input shape allows us to closely follovais analysis. The
total input from all connected populations and externatsesi(e.g., vision system,
also modeled as Gaussian signaljités then given by

S(xt) =k Y g(t)Aexp(—(x—x)?/20%) (10)
i
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wherek > 0 is a scale factor to guarantee that the total external irgroains small
compared with the recurrent interactions within the locggation.

To model different cognitive functions like working memaoy decision mak-
ing in the various layers of the model, we specifically adbpttiasic field equation
given by Eq. 1 accordingly. To implement in OML, AOL and CSGlwarking
memory function, it is important that a bump remains aftessegion of the transient
stimulus that has initially driven its evolution. The cotiolh Wy, > h > 0 guaran-
tees the existence of a stable bump 8x) = 0 which, however, has a slightly
smaller width compared to the bump in the presence of inpatcsl this solution
self-sustained to distinguish it from a suprathreshold/agtpattern that becomes
self-stabilized only because of the presence of exterpaitinin this case, equation
S(Xo +a/2) = h—W(a) has a solution which represents a stable localized activa-
tion buth > Wy holds, that is, the field dynamics is in the mono-stable regamd
suprathreshold activity will decay to rest state withoutexal support.

To represent and memorize simultaneously multiple itermapbi-bump solution
is required. An interaction kernel with long-range, consiahibition (Eqg. 2) may
sustain multiple localized activity patterns without exia inputs with additional
stabilization mechanisms (Trappenbeg and Standage, Zy0tggen and Bicho,
2006). For simplicity, we have used for the current roboégperiments kernels
with limited spatial range to exclude mutual competitiotvEzen multiple memo-
ries. An alternative solution that we are currently expigrior the robotics work is
to use coupling functions with multiple zero-crossingsgdelang excitatory interac-
tions also at larger distances (Laing et al., 2002; Feredied., 2011).

The memory is continuously updated in accordance with ifout the vision sys-
tem indicating a change in the external world (e.g., a nevation of a specific
object). To implement the “forgetting” process, we use apdaniirst-order dynam-
ics with an appropriate time scale for the (local) adaptatibthe inhibitory inpuh
to destabilize an existing bump (Bicho et al., 2000):

= (N~ i) — (1~ ) (A ) (11
where|hmax| < W and|hmin| > W, are the two limit values foh that define the bi-
stable and the mono-stable regime, respectively. The fateamge for destabilizing
a memory function in case of an existing bunep € 1) or restoring in the absence
of a bump €, = 0) is given by the parametergmn > 0 andrp max > 0.

To meet the real-time constraints of action selection arad ijderence in a contin-
uously changing environment, we apply in ASL, AEL and lay&GL representing
future subtaks a field dynamics with self-stabilized rativan self-sustained acti-
vation patterns. A decision to select a certain motor befrdhiat takes into account
the most likely goal of the co-actor’s current action, is pemally stabilized by suf-
ficient strong support of external and internal evidencéeybll automatically lose
stability if this evidence changes in favor of a competingdngor.
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4 Setup of Human-Robot Experiments

To test the dynamic neural field model of joint action in humahot experiments,
we have adopted a joint assembly paradigm in which the teantol@onstruct a toy
‘vehicle’ from components that are initially distributed a table (Fig. 2).

Insert Figure 2 around here

The toy object consists of a round platform with an axle orolftvo wheels have to
be attached and each fixed with a nut. Subsequently, founsw@uhat differ in their
color have to be plugged into corresponding holes in thdglat The placing of
another round object on top of the columns finishes the tas&.cbmponents were
designed to limit the workload for the vision and the motosteyn of the robot. It
is assumed that each teammate is responsible to assemidelerd the toy. Since
the working areas of the human and the robot do not overlagsghtial distribution
of components on the table obliges the team to coordinateyarahronize handing-
over sequences. In addition, some assembly steps reqgatreritb co-worker helps
the other by fixating a part in a certain position. It is furthesumed that both team-
mates know the construction plan and keep track of the skibtakich have been
already completed by the team. The prior knowledge abowgehaential execution
of the assembly work is represented in the connectivity betwthe two layers of
CSGL encoding already achieved and still to be accompliabsembly steps. Since
the sequential order of tasks execution is not unique, dt sage of the construc-
tion the execution of several subtasks may be simultangpasisible.

The humanoid robot ARoS used in the e iments has bednrbailr lab. It con-
sists of a stationary torus on which a 7 s AMTEC arm (Sch@antbH) with

a 3-fingers dexterous gripper (Barrett Technology Inc.) arsereo camera head
are mounted. A speech synthesizer (Mif Speech SDKaldlys the robot to
communicate the result of its goal inference and decisiokimggprocesses to the
human user (Bicho et al., 2010).

The information about object class, position and pose ivigedl by the vision
system. The object recognition combines color-based settien with template
matching derived from earlier learning examples (Westghal., 2008). The same
technique is also used for the classification of objected@®, static hand postures
such as grasping and communicative gestures such as gpintin

The selection of a specific complementary behavior in AELtbd translated into
a collision-free arm and hand trajectory. As an importanstint for efficient joint
action coordination, the robotics motion should be perxlyy the user as smooth
and goal-directed To achieve realistic temporal motor bienalike reaching, gasp-
ing and manipulating objects we apply a global planningnégine in posture space.
It is formalized as a nonlinear optimization problem andw# us to integrate con-
straints obtained from human reaching and grasping movisrsaoh as for instance
bell-shaped velocity profiles of the joints (for details §xEsta e Silva et al. (2011)).
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5 Results

In the following we illustrate the coordination of decis®and actions between the
human and the robot in the joint assembly task by preseniugpvsnapshots of
the interactions and the associated neuronal populatmesentations in the model
network. In the examples shown, we focus for simplicity oa ithitial phase of the
construction to explain from the perspective of the robetithpact of action obser-
vation on action selection in varying contéxAs summarized in Table 1, there are
9 possible goal-directed sequences and communicativergeshat distinct popu-
lations in AEL and ASL represent.

Numerical values for the Joint Action Model parameters cafoloind in
doi:10.1016/j.humov.2010.0812 (Bicho et al., 2011a).

Table 1 Goal-direct sequences and communicative gestures

Action Sequence of motor primitives Short description

Ar reach wheel» grasp— attach attach wheel

Ay reach wheel» grasp— handover give wheel

Az reach hand- grasp wheel- attach receive wheel to attach
Ay reach nut— grasp— attach attach nut

As reach nut- grasp— handover give nut

As reach hand- grasp nut— attach receive nut to attach
A7 hold out hand request piece

Ag point to wheel point to wheel

Ag point to nut point to nut

At any point of time of the human-robot interaction only a fefvthese action
alternatives are simultaneously possible, that is, arpaued by input from con-
nected populations. Figure 3 illustrates the competitietwieen action alternatives
in AEL and the decisions linked to overt behavior of the rébtitis important to
notice, however, that the competition process in ASL and Ab works for more
complex scenarios with a larger set of possible complemgiihaviors (e.g., a
household scenario Pinheiro et al. (2010), full constowctif the 'toy vehicle’ Bi-
cho etal. (2011b)). The number of competing action repitasiens only affects the
time it takes to stabilize a suprathreshold activationguattepresenting a decision
(Erlhagen and Schoner, 2002).

Insert Figure 3 around here

Lbut seeht t p: / / www. yout ube. cont wat ch?v=A0genf XnW E for a video with the com-
plete construction task

2 video of the human-robot interactions depicted in Fig. 3 dan found in http:
/] dei - s1. dei.um nho. pt/pessoas/ est el a/ Vi deos/ JAST/ Vi deo_Fi g4_
Aros_Hunman_Toy_Vehi cl e. npg
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5.1 Selection Based on an Anticipatory Model of Action
Observation and Shared Task Knowledge

A cornerstone of fluent human social interactions is theitghid predict the out-

comes of others’ action sequences. It allows individualprepare actions in re-
sponses to events in the environment that will occur onlyresicterable time ahead.
For a robot that is supposed to assist a human user in a slhaate@tgoal inference
capacity should be used to select an action that best sérwesser's future needs.
But even if the human co-worker hesitates and does not shgw\aert behavior, a

fluent team performance requires that the robot is able ®itakative and to select
an action in accordance with the shared task knowledge.

These cognitive capacities are tested in the experimenttéedn Fig. 4 (video
snapshots) and Fig. 5 (field activities). The experimemtstey placing the platform
on the table. The vision input updates the task representatiCSGL and the ac-
tivity of two populations representing the possible sullgoéattaching the wheels
become suprathreshold. Initially, the two wheels are ketat the working area of
the human while the two nuts are located in the workspaceeofdahot. As shown
in snapshots S1-S2 (Fig. 4), the human reaches and graspseh viihthe moment
of the grasping, AR0S anticipates that the co-actor’'s miotention is to mount the
wheel on his side. It immediately decides to reach for a niitdid it out for the
human since according to the assembly plan it is the compgdhanhe will need
next.

Insert Figure 4 around here

Insert Figure 5 around here

The capacity to infer the goal of the user at the time of gragfs possible be-
cause of the way in which the partner grasps an object coriméysnation about
what he intends do with it. The robot has sequences of mobiitiyes in its mo-
tor repertoire that associate the type of grasping withifipdinal goals. A grasping
from above is used to attach a wheel to the axle whereas uside grip is the most
comfortable and secure way to hand the wheel over to the twr-dte observation
of an above grip (represented in the AOL) together with infation about the cur-
rently active subgoal (attach wheel on the user’s side inIQ$@&ger an activation
peak in ASL that represents the simulation of the correspgyiceaching-grasping-
inserting’ chain (see panel a in Fig. 5, time interval TO-TMhich automatically
activates the underlying goal, 'insert wheel’, in the intien layer (see panel b in
Fig. 5, time interval TO-T1; see also snapshot S1 in Fig. 4)ewéver the activation
pattern in IL rises above threshold it initiates a dynamidating process in the sec-
ond layer of CSGL, which represents the next possible suf®)dar the team (see
panel c in Fig. 5; see also snapshot S2 in Fig. 4, time intéf@al 1). The shared
task representation allows the robot to select a compleangattion that serves the
user’s future goal of fixing the wheel with a nut, i.e. the &¥toy activation pattern
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in AEL (panel d in Fig. 5, time interval TO-T1) reflects the d&an to 'give a nut’
to the human.

Since the robot has no wheel in its working area, an alteraakecision would be
to request a wheel from the user to attach it on its side of kggom. The robot’s
choice to first serve the human is the result of slight diffiees in the input strength
from populations in CSGL to associated action represamsaiin AEL. These dif-
ferences favor the execution of the user’s subtasks ovesubesks that are under
the control of the robot.

However, as illustrated in snapshot S3 (Fig. 4), in this expent the human does
not attach the wheel. Instead he places the wheel back omltes then hesitates
and does not show any object-directed action. As a conseguea suprathreshold
activation exists at that time in ASL (see panel a, Fig. 5etinterval T1-T2) and
activity below threshold in IL indicates that the robot hasrently not attributed any
action goal to the co-actor (see panel b, Fig. 5, time intartar2). The robot now
takes initiative and decides to request a wheel to mountiisaside of the platform
(snapshot S4, Fig. 4). This change in decision is possibtause the population
representing the previously selected (but not yet exegbtethvior to transfer a nut
is not supported anymore by input from IL. On the other hanfiyrimation about
currently possible subgoals and the location of parts invlbewvorking areas create
sufficiently strong input to AEL to trigger a self-stabildactivation of the popu-
lation representing the request-wheel’ gesture (pankeigl 5, time interval T1-T2).

Subsequently, the human grasps the wheel with a side g@ps$siot S5, Fig. 4).
This information coded in AOL (not shown) together with infeation about cur-
rently active subgoals trigger a bump in ASL that represémssimulation of
the corresponding 'reach-grasp-handover’ chain (pan€ig,5, time interval T2-
T3), which in turn automatically activates the underlyirgpgrepresentation 'give
wheel’ in IL (panel b in Fig. 5, time interval T2-T3). The evaolg suprathreshold
activation in AEL (panel b, Fig. 5, time interval T2-T3) shethe robot’s decision
to receive the wheel and attach it (see also snapshots S645g.i4). When the
robot has attached the wheel, the vision input updates tertpresentations in
CSGL and a bump encoding the subsequent subgoal 'ingerhmobot’s side’
evolves (Fig~ d of time interval time T2-T3). The second possible sabijo-
sert wheel on user’s side’ remains active.

Next, the user grasps again a wheel from above, ARoS preafickefore that
the user will attach the wheel on his side (panel b in Fig.ragtinterval T3-T4)
and decides to hand over a nut to fix the wheel (snapshots S8-59. 4; see
panel d in Fig. 5, time interval T3-T4). Note that an alteiveatecision in AEL
could be to 'grasp and attach a nut on the robot's side’. Thatifrom OML (not
shown) indicating that the two nuts are located in the wosksf the robot together
with the input from CSGL support the two action alternativeAEL. As explained
above, the decision process appears to be biased towalidgdéne human first
due to the difference in input strengths from suprathrespobulation activity in
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CSGL. As can be seen in the snapshots S9-S11 (Fig. 4), thattzenes the wheel,
and subsequently grasps the nut from the robot’s hand toiptugthe axle. As the
vision system detects the change in the target object, firesentations of already
achieved subgoals in the memory layer of CSGL are updatestdicgly and the
subgoal 'insert nut on robot’s side’ becomes active (nowst)oAs a consequence,
a bump in AEL evolves that represents the decision of thetrimbgrasp and attach
a nut on its side of the platform (see panel d in Fig. 5, timeridl T4-T5). The
overt robot behavior is depicted in snapshots S12-S14 “‘E

5.2 Understanding Partially Occluded Actions

In the previous example, we have seen that the robot cowddtinfough motor sim-
ulation the co-actor’s motor intention from the way the a@bjs grasped. But what
happens when the robot cannot directly observe the haret:idhjeraction? In nat-
ural environments with multiple objects and occluding aoefs this is a common
scenario. The capacity to discern the user’'s motor intardiad to select an appro-
priate complementary behavior should of course not be pliscuby missing infor-
mation about the grip type used. The firing of mirror neuransimilar occluder
paradigms suggest that working memory about objects indbreesand shared task
information about what the user should do in a specific Sdnamay sustain the
motor simulation process. This is illustrated in the foliogsinteraction scenario
in which only the reaching part of the user’s action sequeatebe observed (see
Fig. 6).

Insert Figure 6 around here

In this experiment, one wheel and the two nuts are locatduimihe working area
of the robot while the second wheel is located in the useriksmace. Initially all
objects are visible for the robot and their locations cars theimemorized in OML.
Then a box is introduced into the scene. The robot sees tins haad disappearing
behind the occluding surface but remembers that there iseeeMdehind it. Fig-
ure 7 illustrates the goal inference mechanism in this situation

Insert Figure 7 around here

Insert Figure 8 around here

The corresponding population in AOL (not shown) codes oh&/reaching behav-
ior. The currently possible subgoals represented in CS@&Lirsert wheel on user’s
side’ and 'insert wheel on robot’s side’ (panel b in Fig. 7heTinputs from AOL

and CSGL to ASL thus pre-activate the representations ofdwapeting action

3 for the video seent t p: / / www. yout ube. conf wat ch?v=7t 5DLgH4DeQ
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chains associated with two possible motor intentions. Tddtimnal input neces-
sary for goal inference comes from the information aboutrtieenorized location
of the wheels in the two workspaces represented in the OM& jismel a in Fig.
7). These inputs triggers the evolution of a self-stabilizaetivation peak in ASL
representing the action sequence 'reach wheel-graspri(sese panel c in Fig. 7;
see also snapshot S2 in Fig. 6). This suprathreshold &otivt turn induces the
evolution of a bump in IL representing the inferred goal & tuman to insert the
wheel (see panel ain Fig. 8). Input from IL triggers a dynaugidating process in
the second layer of the CSGL, representing the next possilbigoal(s) for the user
(see panel b in Fig. 8). This allows the robot, as explaingdérprevious example,
to select a complementary action that serves the user'sefueds. As can be seen
when comparing the pattern of localized activation that\@®in AEL, the robot
decides to serve the human by grasping a nut for handingiit(sge panel c in Fig.
8 and snapshots S3-S5 in Fig. 6).

Note that the simplification for the current robotics workrépresent an entire
action sequence like reaching-grasping-attaching in glesipopulation does not
affect the mechanisms supporting the simulation of pdytadclude actions in ASL.
A chain of coupled populations of mirror neurons represgntndividual motor
acts (Fogassi et al., 2005) may become sequentially aetivabove threshold by
assuming that all individual population of the chain are-acévated by input from
OML and CSGL and the initial "reaching” population gets dtdtial input from the
corresponding neuronal pool in the action observationrléigdhagen et al., 2007).

6 Discussion

This work showed that dynamic neural fields provide a powdineoretical frame-
work for designing autonomous robots able to naturallyratewith humans in
challenging real-word environments. Flexible and ingetit robot behavior in a so-
cial context cannot be purely explained by a stimulus-ieagtaradigm in which
the system merely maps in a pre-determined manner curreimbemental inputs
onto overt behavior. Dynamic neural fields explain the eraecg of persistent neu-
ral activation patterns that allows a cognitive agent tbate and organize behavior
informed by past sensory experience, anticipated futuveé@mmental inputs and
distal behavioral goals. The DNF architecture for jointi@ttreflects the notion
that cognitive representations, that is, all items of mgnard knowledge consist
of distributed, interactive, and overlapping networks oiftical populations (“cog-
nit” from Fuster (2006)). Network neurons showing suprastiold activity are par-
ticipating in the selection of actions and their associateadsequences. Since the
decision-making normally involves multiple, distributegpresentations of potential
actions that compete for expression in overt performamee;dbot’s goal-directed
behavior is continuously updated for the current enviromta@lecontext. Important
for decision making in a collaborative setting, inferrinthers’ goals from their
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behavior is realized by internal motor simulation based o dctivation of the
same joint representations of actions and their envirotahefiects (“mirror mech-
anism”, Rizzolatti and Sinigaglia (2010)). Through thig@uatic motor resonance
process, the observer becomes aligned with the co-acta@rinstof actions and
goals. This alignment allows the robot to adjust its behawithout explicit com-
munication to those of the human co-actor in space and tiorea(f integration of
verbal communication in the DNF architecture see (Bichd.e@10)).

The implementation of aspects of real-time social cognitioa robot based on
continuously changing patterns of neuronal activity insritiuted, interactive net-
work strongly contrasts with traditional Al approachese¥healize the underlying
cognitive processes as the manipulation of discrete sysrihak are qualitatively
distinct and entirely separated from sensory and motormnédion. We do not deny
that the sequence of decisions shown in our robotics expeatsrcould be imple-
mented by symbolic planning as well. In fact, similar joirssambly tasks have
been used in the past to test Al-style control architectimesuman-robot interac-
tions (Alami et al., 2005; Hoffman and Breazeal, 2007; Stedl., 2004). Typically,
these architectures include a dedicated module that argdimé high-level task of
intention coordination using rule-based logic. Howeuse,additional planning step
which is needed to link the representation of every higlellelecision to the level
of action preparation for the robot’s actuators greatlyres the efficiency of those
representations. This makes it hard or even impossible lieeae the impressive
flexibility and fluency of human team performance.

In the experiments reported here, the robot-human teamuesetthe individ-
ual assembly steps without errors and in the correct terhpodar. It is important
to keep in mind, however, that decisions based on noisy amipdete sensory in-
formation and anticipated environmental inputs are flliht is thus no surprise
that execution and prediction errors occur with some pridibain complex real-
world scenarios such as the joint assembly task. To workieftly as a team, it
is important that these errors are detected and compenisatede or both team
members before success is compromised. Neurophysiol@giddbehavioral find-
ings suggest that similar neural mechanisms are involvedanitoring one’s own
and other’s task performance (Sebanz et al., 2006) We haegided in detail else-
where how the basic DNF model of joint action coordination ba extended to
include also an action monitoring function (Bicho et al.12B). The key idea is
that specific populations integrate activity from conndateural pools or external
sensory signals that carry the conflicting information. Fstance, the user might
want to transfer a nut to the robot but a nut has been alredalyhatd at the robot’s
construction side. To detect the conflict between the irfeintention of the user
and the state of the construction it is sufficient to postuthat input from IL and
CSGL may drive the target population beyond threshold. $hathreshold activ-
ity may then produce (inhibitory) biasing effects for therguetition between action
representations in AEL. In the example, the prepotent cemphtary behavior of
receiving the nut has to be suppressed to favor a correamssgike a communica-
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tive pointing at the attached object. As integral part of distributed network, the
action monitoring thus provides just another input to thaaiyic action selection
process.

The applications in the domain of cognitive robotics previcew challenges for
the theoretical analysis of dynamic neural fields. Mostentrmathematical studies
are exclusively concerned with the existence and stalmifigharacteristics patterns
like bumps or traveling waves (Coombes, 2005). They do ndtess the spatio-
temporal properties that external inputs must satisfy tegate those patterns when
applied to a field at rest or in a pre-activated state. Foaires, multi-bump solu-
tions that we and others apply as a memory model for multigles or sequen-
tial events (Ferreira et al., 2011) are known to exist wheauwpting function with
oscillatory decay is used (Laing et al., 2002). From an agfibbn point of view,
analyzing the spatial properties of the inputs (e.g., witkhative distance etc.) that
may generate multi-bump solutions when they are presemtadtaneously or in
sequential order is of highest importance (Ferreira , Eimsand Bicho, in prepa-
ration).

The present robotics implementations with hand-codedtgfrom connected
populations are based on the seminal analytical studiesnafrfand co-workers on
the formation of patterns with stationary localized stimibr the robotics domain,
it would be highly desirable to combine the field dynamicdwetlearning dynam-
ics that would allow us to establish the inter-field conr@wdiin the distributed
network during training and practice. According to the pijrte first enunciated by
Hebb (1949), memory is formed by associative synaptic natouis of connec-
tions between neuronal assemblies simultaneously exditgzbrtant for cognitive
control, persistent population activity allows the leamsystem to establish asso-
ciations between transient events separated in time. knque simulation studies,
we have shown for instance that a rate-based Hebbian |gami@ (for review of
mathematical formulations see Gerstner and Kistler (20€4) be applied to estab-
lish the goal-directed mappings for action simulation iathirror circuit (Erlhagen
et al., 2006, 2007). A more rigorous understanding of thel filsinamics with the
weighted, self-stabilized activity from connected popiolas as non-stationary in-
put would be an important contribution for the design of atbaamous learning
system.

Dynamic approaches to robotics and cognition have beem aftiticized to
address mainly lower-level cognitive phenomena like serswmtor coordination,
path planning or perception and not the high-level cogaitapacities which are
characteristics of human beings (Vernon et al., 2007). g3ainle to synthesize in
an embodied artificial agent the cognitive demands of iea-tooperative inter-
actions with a human co-actor shows that dynamic neural fieddry provides a
promising research program for bridging this gap.

=


Peter
Notiz
Please prepare references in Springer style [1,2]

1. ref1
2. ref2

etc.


A DNF approach to Natural and Efficient Human-Robot Collaition 19

Acknowledgements The present research was conducted in the context of théSfB-EU-IP
Project JAST (proj. nr. 003747) and partly financed by the g&ints POCI/V.5/A0119/2005 and
CONC-REEQ/17/2001. We would like to thank Luis Louro, EmalrfBiousa, Flora Ferreira, Eliana
Costa e Silva, Rui Silva and Toni Machado for their assigtathing the robotic experiments.

References

Alami, R., Clodic, A., Montreuil, V., Sisbot, E. A., Chatjl&®., 2005. Task plan-
ning for human-robot interaction. In: Proceedings of th8%0oint Conference
on Smart Objects and Ambient Intelligence. ACM Internagiid@onference Pro-
ceeding Series, Vol. 121, pp. 81-85.

Amari, S., 1977. Dynamics of pattern formation in latergtibitory type neural
fields. Biological Cybernetics 27, 77-87.

Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E., 20Neuro-cognitive mech-
anisms of decision making in joint action: A human-roboénaiction study. Hu-
man Movement Science 30, 846—868.

Bicho, E., Erlhagen, W., Louro, L., Costa e Silva, E., SiRa,Hipolito, N., 2011b.
A dynamic field approach to goal inference, error detectioeh @nticipatory ac-
tion selection in human-robot collaboration. In: DautdmiaK., Saunders, J.
(Eds.), New Frontiers in Human-Robot Interaction. Johnj&mams, pp. 135—
164.

Bicho, E., Louro, L., Erlhagen, W., 2010. Integrating vdrlad nonverbal com-
munication in a dynamic neural field architecture for humalnet interaction.
Frontiers in Neurorobotics doi: 10.3389/fnbot.2010.0005

Bicho, E., Mallet, P., Schoner, G., 2000. Target repreg@rt on an autonomous
vehicle with low-level sensors. The International JourmfaRobotics Research
19, 424-447.

Cisek, P., 2007. Cortical mechansims of action selectfmatfordance competition
hypothesis. Philosophical Transactions of the Royal Sp&8e62, 1585-1599.

Cohen, P., Levesque, H. J., 1990. Intention is choice withra@gment. Artificial
Intelligence 42, 213-261.

Coombes, S., 2005. Waves, bumps, and patterns in neuraltfesddies. Biological
Cybernetics 93, 91-108.

Costa e Silva, E., Costa, F., Bicho, E., Erlhagen, W., 20hliNear optimization
for human-like movements of a high degree of freedom robatitn-hand sys-
tem. In: Murante, B. (Ed.), Lecture Notes in Computer Saignol. 6794, Part
lll. Springer-Verlag, pp. 327-342.

Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., SchpBer1999. The distribu-
tion of neuronal population activation as a tool to studgiiattion and integration
in cortical representations. Journal of Neuroscience btt94, 53-66.

Erlhagen, W., Bicho, E., 2006. The dynamic neural field apphoto cognitive
robotics. Journal of Neural Engineering 3, R36—R54.



20 Wolfram Erlhagen and Estela Bicho

Erlhagen, W., Mukovskiy, A., Bicho, E., 2006. A dynamic mbfiw action under-
standing and goal-directed imitation. Brain Research 1083-188.

Erlhagen, W., Mukovskiy, A., Chersi, F., Bicho, E., 2007. e development of
intention understanding for joint action tasks. In: 6th EEBt. Conf. on Devel-
opment and Learning. Imperial College London, pp. 140-145.

Erlhagen, W., Schoner, G., 2002. Dynamic field theory of ement preparation.
Psychological Review 109, 545-572.

Ferreira, F., Erlhagen, W., Bicho, E., 2011. A dynamic fieldd®l of ordinal and
timing properties of sequential events. In: Honkela, T.cBUN., Giorlami, M.,
Kaski, S. (Eds.), Lecture Notes in Computer Science 6798, IPaSpringer-
Verlag, pp. 325-332.

Flanagan, J. R., Bowman, M. C., Johansson, R. S., 2006. @astriategies in object
manipulation tasks. Current Opinions in Neurobiology 150)-6659.

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., dhérsRizzolatti, G., 2005.
Parietal lobe: from action organization to intention ursti@nding. Science 308,
662-667.

Fong, T., Nourbakhsh, I., Dautenhahn, K., 2003. A surveyoaidly interactive
robots. Robotics and Autonomous Systems 42, 143—-166.

Fuster, J. M., 2006. A cognit: A network model of cortical regentation. Interna-
tional Journal of Psychophysiology 60, 125-132.

Genovesio, A., Brasted, P. J., Wise, P., 2006. Representafifuture and previ-
ous spatial goals by separate neural populations in prfiroartex. Journal of
Neuroscience 26(27), 7305-7316.

Gerstner, W., Kistler, W. M., 2002. Mathematical formuteits of Hebbian learning.
Biological Cybernetics 87, 404-415.

Gibbson, J. J., 1979. The ecological approach to visuakepgian. Houghton Mif-
flin, Boston.

Gold, J. I., Shadlen, M., 2007. The neural basis of decisiaking. Annual Review
of Neuroscience 30, 535-574.

Haazebroek, P., van Dantzig, A., Hommel, B., 2011. A comiputal model of
perception and action for cognitive robots. Cognitive Rssc12, 355-365.

Hebb, D. O., 1949. The organization of behavior. John Wiley &ons, New York.

Hoffman, G., Breazeal, C., 2007. Cost-based anticipatatjoa selection for
human-robot fluency. IEEE Transactions on Robotics 23, 962-—

Kishimoto, K., Amari, S., 1979. Existence and stability of&l excitations in ho-
mogeneous neural fields. J. Math. Biology 7, 303—-318.

Kozma, R., 2008. Intentional systems: Review of neurodyingnmodelling, and
robotics implementations. Physics of Life Reviews 5, 1-21.

Laing, C. R., Troy, W. C., Gutkin, B., Ermentrout, G. B., 208&ultiple bumps in a
neuronal model of working memory. SIAM J. Appl. Math 63, 6Z--9

Levesque, H., Lakemeyer, G., 2008. Cognitive roboticsvém Harmelen, F., Lifs-
chitz, V., Porter, B. (Eds.), Handbook of Knowledge Repnéston. Elsevier B.
V., pp. 869-886.



A DNF approach to Natural and Efficient Human-Robot Collaition 21

Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M. Bekkering, H.,
2007. The mirror neuron system is more active during complgary compared
with imitative action. Nature Neuroscience 10, 817-818.

Pinheiro, M., Bicho, E., Erlhagen, W., 2010. A dynamic nédiedd architecture
for a pro-active assistant robot. In: Proc. of 3rd IEEE/RB®BS International
Conference on Biomedical Robotics and BiomechatronicREBioRob 2010).
pp. 777—784.

Rizzolatti, G., Luppino, G., 2001. The cortical motor systé&Neuron 31, 889-901.

Rizzolatti, G., Sinigaglia, C., 2010. The functional rofeloe parieto-frontal mirror
circuit: interpretations and misinterpretations. Natleviews Neuroscience 11,
264-274.

Sandamirskaya, Y., Schoner, G., 2010. An embodied acdouserial order: How
instabilities drive sequence generation. Neural Netw@fs1164-1179.

Schaal, S., 2007. The new robotics: Towards human-cemegsiedines. HFSP Jour-
nal 1, 115-126.

Schoner, G., 2008. Dynamical systems approaches to cognit: Sun, R. (Ed.),
The Cambridge Handbook of Computational Psychology. CatgbrUniversity
Press, pp. 101-125.

Sebanz, N., Bekkering, H., Knoblich, G., 2006. Joint actlmdies and minds mov-
ing together. Trends in Cognitive Sciences 10, 70-76.

Shepard, R. N., 1997. Toward a universal law of generatindidor psychological
science. Science 237, 1317-1323.

Steil, J. J., Rothling, F., Haschke, R., Ritter, H., 200du&ed robot learning for
multi-modal instruction and imitation of grasping. Rolestiand Autonomous
Systems 47,129-141.

Tanji, J., Shima, K., Mushiake, H., 2007. Concept-basedbieliral planning and
the lateral prefrontal cortex. Trends in Cognitive Sciehte528—-534.

Trappenbeg, T., Standage, D. I., 2005. Multi-packet regjinrstabilized continuous
attractor networks. Neurocomputing 65(66), 617—625.

Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga Keysers, C., Rizzo-
latti, G., 2001. | know what you are doing: A neurophysiokajistudy. Neuron
31, 155-165.

Vernon, D., Metta, G., Sandini, G., 2007. A survey of arti#laiognitive systems:
Implications for the autonomous development of mental bdities in comput-
tional agents. IEEE Transactions on Evolutionary Companet, 151-181.

Westphal, G., von der Malsburg, C., Wirtz, R. P., 2008. treatiriven emergence
of model graphs for object recognition and categorizationBunke, H., Kan-
del, A., Last, M. (Eds.), Applied Pattern Recognition, Sasdin Computational
Intelligence Vol. 91. Springer Verlag, pp. 155-199.

Wilson, H. R., Cowan, J. D., 1973. A mathematical theory effimctional dynam-
ics of cortical and thalamic nervous tissue. Kybernetik352;80.



22 Wolfram Erlhagen and Estela Bicho

Figure captions

Figure 1: Joint action model consisting of a distributed network aéinonnected
neural populations. It implements a flexible mapping frorserved actions (layer
AOL) onto complementary actions (layer AEL) taking into acot the inferred ac-
tion goal of the partner (layer IL), contextual cues (layeMlQ and shared task
knowledge (layer CSGL). The goal inference capacity is thasemotor simulation
(layer ASL)

Figure 2: Joint action scenario: human-robot team has to assembdy &éhicle’
from components that are initially distributed on a table

Figure 3: Sequence of decisions in AEL and corresponding robot behafa)
Temporal evolution of total input to AEL. (b) Temporal evban of field activity
showing the competition process and the sequence of desigive wheel’, ’insert
wheel’, 'point to nut’ and 'insert nut'. (c) The four snapgbdlustrate correspond-
ing events of the human-robot interactions

Figure 4: Video shapshots that illustrate the capacity of the robotfer goals, take
initiative and anticipate the user’s future needs

Figure 5: Field activities in layers ASL, IL, CSGL and AEL for the exjeent
in Fig. 4. (a) Temporal evolution of input to ASL (top) and fledctivity in ASL
(bottom). (b) Temporal evolution of field activity in IL. (¢Jpdating of CSGL layer
representing future subgoals based on the inferred matention of the user (in
IL). (d) Temporal evolution of input to AEL (top) and field adty in AEL (bottom)

Figure 6: Snapshots of a video showing action understanding of figrtiecluded
actions. Snapshot S1 shows the view of the vision systemeafaihot

Figure 7: Field activities for the experiment in Fig. 6. (a) Temporablaitions of
fields’ activity in the OML. (b) Temporal evolution of field teity representing
present possible subgoals (in CSGL). (c) Temporal evatutfanput to ASL (top)
and the field activity in ASL (bottom)

Figure 8: Field activities in IL, CSGL and AEL for the experiment in Fi§. (a)
Temporal evolution of field activity in IL. (b) Updating of fetrepresenting subse-
quent subgoals for the user based on a prediction of hismumetor intention (in
CSGL). (c) The temporal evolution of input to AEL (top) anddiectivity in AEL
(bottom)
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