179 research outputs found

    New data on Gaidropsarus granti (Regan, 1903) (Gadiformes: Lotidae) from the Mediterranean Sea, with emphasis on its parasites

    Get PDF
    One adult male Azores rockling Gaidropsarus granti was captured by trammel nets at a depth of about 250 m near the coast of Arbatax (Sardinia, Italy) in early March 2007. This new report confirms a wide bathymetric range for this species. Macroscopic and microscopic analysis of the gonad showed a spent testis at a postspawning stage, with a weak residual spermatogenetic activity. Several body parts of Natantia (Crustacea: Decapoda) were detected in its stomach contents. Different developmental stages of 91 parasite specimens belonging to Arthropoda (Gnathiidae) and Nematoda (Anisakidae, Cystidicolidae and Philometridae) were found in its mouth and gills, and body cavity, respectively. Myxozoan spores were found in the gallbladder. Male and female nematodes of the genus Ichthyofilaria are reported for the first time from the Mediterranean Sea, and a very rare male of this genus is reported for the second time in the world. Parasitological results indicated that this Atlantic migrant probably entered the Mediterranean as an adult, suggesting for a non-indigenous species the possibilities of entering with natural parasites and/or acquiring native parasites in the introduced range

    DNA BARCODING OF FISH SPECIES FROM THE MEDITERRANEAN COAST OF ISRAEL

    Get PDF
    Accurately-classified genomic data in the Barcode of Life Data System (BOLD) database is vital to the protection and conservation of marine biodiversity in the Mediterranean Sea. The taxonomic classifications of 468 fish of 50 Mediterranean species were analyzed using the BOLD Identifier tool for variation in the cytochrome oxidase subunit I (COI) mitochondrial gene. Within species, nucleotide maximum composite likelihood was low with a mean of 0.0044±0.0008. Three presumptive species had significantly higher values e.g., Arnoglossus spp. (0.07), Torquigener flavimaculosus (0.013) and Boops boops (0.028). However, samples of Arnoglossus species were sub-classified into two groups that were finally identified as two different species e.g., Arnoglossus laterna and Arnoglossus thori. For the different species, BLAST searches against the BOLD database using our DNA barcoding data as the query sequences designated the most similar targets into groups. For each analyzed species, the similarity of the first and second threshold groups ranged from 95 to 99% and from 83 to 98%, respectively. Sequence based classification for the first threshold group was concordant with morphology-based identification. However, for 34 analyzed species (68%) overlaps of species between the two threshold groups hampered classification. Tree-based phylogeny analysis detected more than one cluster in the first threshold group for 22 out of 50 species, representing genetic subgroups and geographic origins. There was a tendency for higher conservation and lower number of clusters in the Lessepsian (Red Sea) migrant versus indigenous species

    Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    Get PDF
    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually

    Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    Get PDF
    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersión del editor4,411

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    First confirmed record of the blue tang, Acanthurus  coeruleus (Actinopterygii: Perciformes: Acanthuridae) in the Mediterranean

    No full text
    A single specimen of a sub-adult specimen of the Atlantic species, Acanthurus coeruleus Bloch et Schneider, 1801, was collected in the Mediterranean coast of Israel. This collection was the first confirmed record of this species in the Mediterranean since hitherto it was known from this region only by a single underwater photograph from Cyprus. We postulate that this species may be considered as having established a population in this region

    Alien Fish Species in the Eastern Mediterranean Sea: Invasion Biology in Coastal Ecosystems

    Get PDF
    The spread of non-indigenous species (NIS) in the eastern Mediterranean Sea is an ongoing and accelerating process. Non-indigenous species are regularly reported from various coastal habitats in the eastern Mediterranean Sea but fundamental knowledge on the assemblage structure of coastal fish communities are lacking. This thesis aims to increase the knowledge on the fish assemblage structure and function of Posidonia oceanica meadows and sandy habitats in a coastal area of the eastern Mediterranean Sea and give insight into invasion biology by investigating the potential impact of introduced fish species to the local ecology and food-web of the marine systems under study. Functional and feeding guilds were developed to investigate the fish assemblage structure and function of coastal fish communities and to assess the potential role of NIS in the food web. In addition, diet nvestigations were considered important first steps in order to evaluate the potential role and impact of recently established NIS in the recipient region. During the sampling campaign two species were for the first time reported in the area. Posidonia oceanica was found to be a multifunctional habitat for fish species. It was found to be a highly important nursery habitat for several species during summer and a habitat that could under certain seasons concurrently be used by both adults and juveniles. Four functional guilds were created to describe the habitat use of P. oceanica meadows for each species encountered; juvenile migrants, seagrass residents, seasonal migrants and occasional visitors. Affinity of each species to P. oceanica was assessed in a comparison with each species distribution on open sand within the same depth range. Among the 88 species encountered, eleven were found to be non- indigenous of Indo-Pacific and Red Sea origin, three of them using segrass mainly as juveniles, and four as residents. In a comparison of fish assemblage structure between seagrass and sandy habitats quantitative sampling in combination with classification of fish species into six major feeding guilds revealed the position and contribution of non-indigenous species (NIS) in the food web of Posidonia oceanica and sandy habitats. In P. oceanica beds and on sandy bottoms 10 and five species, respectively, were non-indigenous of Indo-Pacific and Red Sea origin. The proportional contribution of NIS individuals on P. oceanica beds was lower than that of sandy bottoms (12.7 vs. 20.4 %) a pattern that also followed for biomass (13.6 vs. 23.4 %), indicating that low diverse systems may be more prone to introductions than species-rich communities. The two habitats had similar fish feeding guilds, but the biomass contribution from NIS varied within each guild, indicating different degrees of impact on the available resources. Size was considered highly important due to habitat shift of species with increased size. Two of the aspects considered in this study, the chance of establishing and the chance of being very dominant will depend upon competitive abilities strongly coupled to size and grounds for habitat shift. However, success of establishment will also depend on appropriate food resources in the recipient community as well as competitive abilities and level of competition in the food web within habitats. No support could be found for the theory that taxonomic affiliation could facilitate invasion success. The non-indigenous bluespotted cornetfish Fistularia commersonii was found to be a strictly piscivore predator and the diet consisted of 96 % by number and >99 % by weight of fish. The diet of F. commersonii was related to time of year, and fish size. Size classification and habitat of prey groups (benthic, supra-benthic, and pelagic) showed that with increased body length it extended its diet to larger prey and more generalist feeding. Fistularia commersonii was found to prey on commercial important native species (e.g. Spicara smaris, Boops boops, Mullus surmuletus) and the absence of NIS from its diet was mainly attributed to the absence of NIS with elongated body shape. The feeding ecology of two common indigenous (Sphyraena sphyraena and Sphyraena viridensis) and one abundant non-indigenous barracuda, Sphyraena chrysotaenia, of Indo-Pacific origin, was investigated. Confamilial feeding interactions was studied to investigate overlap in feeding preferences in relation to availability of prey items. Dietary analyses revealed that all three species examined were specialized piscivores with their diet consisting to more than 90 % of fish, both by number and weight. All three predators examined showed a significant selectivity towards Atherina hepsetus. Diet breadth and size of prey increased with increased body size, whereas diet overlap between indigenous and NIS decreased, attributed to increased diet breadth and specific life characteristics of indigenous species developing into larger predators extending their foraging habits. During winter, condition of the NIS was significantly lower than that of the indigenous species, indicating that winter temperature in the studied area may be a limiting factor for further population growth of this Indo-Pacific species. This study filled the gap in knowledge about the feeding preferences of the most abundant piscivorous species found on the coasts of the studied area. Additionally, congeneric affiliation of fish introductions was not found to be an important factor explaining successful establishment of NIS. The non-indigenous toxic pufferfish, Lagocephalus sceleratus, was reported for the first time in the Mediterranean in 2003 and two years later in the coastal habitats of Rhodes. The ecological and societal impact of the pest pufferfish was investigated in coastal habitats of Rhodes. Seasonal quantitative sampling in two common coastal habitats was used to investigate habitat use of different life-stages. Sandy areas were found to be highly important for the early life stages of L. sceleratus. In contrast, Posidonia oceanica habitats were mainly preferred by larger (> 29 cm) reproductive adults with a maximum recorded size of 64 cm. Lagocephalus sceleratus was fond to be an invertebrate and fish feeder while size classification revealed a tendency for an ontogenetic diet shift with increased size to a molluscivore feeding. The ontogenetic diet shift is most probably attributed to a shift in habitat use with increasing size. During early life stages L. sceleratus inhabited sandy bottoms where it fed on various invertebrates, including the genus Nassarius and Dentaliidae. The predominant molluscan species found in the diet of larger (> 20 cm) L. sceleratus individuals was Sepia officinalis while predation of Octopus vulgaris was less successful. Sepia officinalis and O. vulgaris are of economic interest in the area and the impact of L. sceleratus on local stocks of these species is discussed. Societal impacts were also evident in the area due to increased public attention concerning the lethal effects of the toxic L. sceleratus, if consumed. Seasonal variations in the condition of L. sceleratus did not show any significance and the high conditional values together with information on high numbers caught during samplings, signifies its ability to become an important member of the coastal fish community. Combined ecological, economical and social effects clearly classify L. sceleratus a pest in the area
    corecore