586 research outputs found

    Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution

    Get PDF
    Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor that plays a crucial role in interleukin-6 (IL-6) signaling, mediating the acute-phase induction of the human Angiotensinogen (hAGT) gene in hepatocytes. We showed earlier that IL-6 induces acetylation of the STAT3 NH2-terminus by the recruitment of the p300 coactivator. We had also observed a physical interaction of STAT3 and Histone Deacetylase1 (HDAC1) in an IL-6-dependent manner that leads to transcriptional repression. In this study, we sought to elucidate the mechanism by which HDAC1 controls STAT3 transcriptional activity. Here, we mapped the interacting domains of both STAT3 and HDAC1 and found that the COOH-terminal domain of HDAC1 is necessary for IL-6-induced STAT3 transcriptional repression, whereas the NH2-terminal acetylation domain of STAT3 is required for HDAC1 binding. Interestingly, over expression of HDAC1 in HepG2 cells leads to significantly reduced amounts of nuclear STAT3 after IL-6 induction, whereas silencing of HDAC1 resulted in accumulation of total and acetylated STAT3 in the nucleus. We have found that HDAC1 knockdown also interferes with the responsiveness of the STAT3-dependent MCP1 target gene expression to IL-6, as confirmed by real-time RT–PCR analysis. Together, our study reveals the novel functional consequences of IL-6-induced STAT3-HDAC1 interaction on nucleocytoplasmic distribution of STAT3

    Histone deacetylases in RA: epigenetics and epiphenomena

    Get PDF
    Reduced synovial expression of histone deacetylases (HDACs) is proposed to contribute to pathology in rheumatoid arthritis (RA) by enhancing histone-dependent access of transcription factors to promoters of inflammatory genes. In the previous issue of Arthritis Research & Therapy, Kawabata and colleagues provided independent evidence that HDAC activity is increased in the synovium and fibroblast-like synoviocytes (FLSs) of patients with RA and is paralleled by increased HDAC1 expression and synovial tumor necrosis factor-alpha (TNFα) production. Remarkably, stimulation of RA FLSs with TNFα specifically increases HDAC activity and HDAC1 expression, suggesting that changes in synovial HDAC activity and expression may be secondary to local inflammatory status

    HDAC-mediated control of ERK- and PI3K-dependent TGF-β-induced extracellular matrix-regulating genes

    Get PDF
    Histone deacetylases (HDACs) regulate the acetylation of histones in the control of gene expression. Many non-histone proteins are also targeted for acetylation, including TGF-ß signalling pathway components such as Smad2, Smad3 and Smad7. Our studies in mouse C3H10T1/2 fibroblasts suggested that a number of TGF-ß-induced genes that regulate matrix turnover are selectively regulated by HDACs. Blockade of HDAC activity with trichostatin A (TSA) abrogated the induction of a disintegrin and metalloproteinase 12 (Adam12) and tissue inhibitor of metalloproteinases-1 (Timp-1) genes by TGF-ß, whereas plasminogen activator inhibitor-1 (Pai-1) expression was unaffected. Analysis of the activation of cell signalling pathways demonstrated that TGF-ß induced robust ERK and PI3K activation with delayed kinetics compared to the phosphorylation of Smads. The TGF-ß induction of Adam12 and Timp-1 was dependent on such non-Smad signalling pathways and, importantly, HDAC inhibitors completely blocked their activation without affecting Smad signalling. Analysis of TGF-ß-induced Adam12 and Timp-1 expression and ERK/PI3K signalling in the presence of semi-selective HDAC inhibitors valproic acid, MS-275 and apicidin implicated a role for class I HDACs. Furthermore, depletion of HDAC3 by RNA interference significantly down-regulated TGF-ß-induced Adam12 and Timp-1 expression without modulating Pai-1 expression. Correlating with the effect of HDAC inhibitors, depletion of HDAC3 also blocked the activation of ERK and PI3K by TGF-ß. Collectively, these data confirm that HDACs, and in particular HDAC3, are required for activation of the ERK and PI3K signalling pathways by TGF-ß and for the subsequent gene induction dependent on these signalling pathways

    A Role for E2F Activities in Determining the Fate of Myc-Induced Lymphomagenesis

    Get PDF
    The phenotypic heterogeneity that characterizes human cancers reflects the enormous genetic complexity of the oncogenic process. This complexity can also be seen in mouse models where it is frequently observed that in addition to the initiating genetic alteration, the resulting tumor harbors additional, somatically acquired mutations that affect the tumor phenotype. To investigate the role of genetic interactions in the development of tumors, we have made use of the Eμ-myc model of pre-B and B cell lymphoma. Since various studies point to a functional interaction between Myc and the Rb/E2F pathway, we have investigated the role of E2F activities in the process of Myc-induced lymphomagenesis. Whereas the absence of E2F1 and E2F3 function has no impact on Myc-mediated tumor development, the absence of E2F2 substantially accelerates the time of tumor onset. Conversely, tumor development is delayed by the absence of E2F4. The enhanced early onset of tumors seen in the absence of E2F2 coincides with an expansion of immature B lineage cells that are likely to be the target for Myc oncogenesis. In contrast, the absence of E2F4 mutes the response of the lineage to Myc and there is no expansion of immature B lineage cells. We also find that distinct types of tumors emerge from the Eμ-myc mice, distinguished by different patterns of gene expression, and that the relative proportions of these tumor types are affected by the absence of either E2F2 or E2F4. From these results, we conclude that there are several populations of tumors that arise from the Eμ-myc model, reflecting distinct populations of cells that are susceptible to Myc-mediated oncogenesis and that the proportion of these cell populations is affected by the presence or absence of E2F activities

    Reduced chromatin acetylation of malignant salivary gland tumors correlates with enhanced proliferation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138924/1/jop12557_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138924/2/jop12557.pd

    Expression pattern of class I histone deacetylases in vulvar intraepithelial neoplasia and vulvar cancer: a tissue microarray study

    Get PDF
    BACKGROUND: Epigenetic regulation is an important mechanism leading to cancer initiation and promotion. Histone acetylation by histone deacetylases (HDACs) represents an important part of it. The development of HDAC inhibitors has identified the utility of HDACs as a therapeutic target. Little is known about the epigenetic regulation of vulvar intraepithelial neoplasia (VIN) and vulvar squamous cell cancer (VSCC). In this study, the expression of class I HDACs (HDAC 1, 2 and 3) was compared in a series of VIN and VSCC tissues. METHODS: A tissue micro array (TMA) with specimens from 106 patients with high-grade VIN and 59 patients with vulvar cancer was constructed. The expression of HDACs 1, 2 and 3 were analyzed with immunohistochemistry (IHC). The nuclear expression pattern was evaluated in terms of intensity and percentage of stained nuclei and was compared between vulvar preinvasive lesions and vulvar cancer. RESULTS: HDAC 2 expression was significantly higher in VIN than in VSCC (p < 0.001, Fisher's test). Also, 88.7% (n=94/106) of VIN samples and only 54.5% (n=31/57) of VSCC samples were scored at the maximum level. Conversely, HDAC 3 expression was significantly higher in VSCC (93%, 53/57) compared to VIN (73.6%, 78/106, p=0.003), whereas only a small difference in the expression of HDAC 1 was found between these two entities of vulvar neoplasia. CONCLUSIONS: These results suggest that epigenetic regulation plays a considerable role in the transformation of VIN to invasive vulvar neoplasia

    Histone deacetylase inhibitors in Hodgkin lymphoma

    Get PDF
    Although Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because of the young age of these patients, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with relapsed HL post stem cell transplantation currently have no curative therapy, and are in need for new drugs and novel treatment strategies. While no new drugs have been approved for the treatment of patients with HL in more than three decades, several new agents are demonstrating promising results in early clinical trials. This review will focus on the emerging role of histone deacetylase inhibitors in patients with relapsed HL

    HDAC8 substrates: Histones and beyond

    Full text link
    The lysine deacetylase family of enzymes (HDACs) was first demonstrated to catalyze deacetylation of acetyllysine residues on histones. In subsequent years, HDACs have been shown to recognize a large pool of acetylated nonhistone proteins as substrates. Recently, thousands of acetylated proteins have been discovered, yet in most cases, the HDAC that catalyzes deacetylation in vivo has not been identified. This gap has created the need for better in vivo, in vitro, and in silico approaches for determining HDAC substrates. While HDAC8 is the best kinetically and structurally characterized HDAC, few efficient substrates have yet been substantiated in vivo. In this review, we delineate factors that may be important for determining HDAC8 substrate recognition and catalytic activity, including structure, complex formation, and post‐translational modifications. This summary provides insight into the challenges of identifying in vivo substrates for HDAC8, and provides a good vantage point for understanding the variables important for predicting HDAC substrate recognition. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 112–126, 2013.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94512/1/22135_ftp.pd

    A Small Peptide Modeled after the NRAGE Repeat Domain Inhibits XIAP-TAB1-TAK1 Signaling for NF-κB Activation and Apoptosis in P19 Cells

    Get PDF
    In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins (BMPs) transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE) binds and functions with the XIAP-TAK1-TAB1 complex to activate p38MAPK and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we showed that deletion of the repeat domain inhibits apoptosis, p38MAPK phosphorylation, and caspase-3 cleavage in P19 neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-α/β phosphorylation and NF-κB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET) to determine that there is a strong likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE's unique repeat domain which we also attribute to be the domain responsible for downstream signaling of NF-κB and activating IKK subunits. From these results, we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-κB activation and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold promising therapeutic strategies in developing pharmaceutical solutions for combating harmful diseases involving excessive downstream BMP signaling, including apoptosis
    corecore