271 research outputs found

    Ocean urea fertilization for carbon credits poses high ecological risks

    Get PDF
    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved

    Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes

    Get PDF
    Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio

    Barnegat Bay-Little Egg Harbor Estuary : case study of a highly eutrophic coastal bay system

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): S3–S16, doi:10.1890/05-0800.1.The Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.Financial support of the Barnegat Bay National Estuary Program and Jacques Cousteau National Estuarine Research Reserve is gratefully acknowledged

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic

    Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance

    Get PDF
    Leles, S.G. ... et. al.-- 6 pages, 3 figures, supplementary material https://royalsocietypublishing.org/doi/suppl/10.1098/rspb.2017.0664This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40–60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on ‘stolen’ chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine researchPeer Reviewe

    Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification

    Get PDF
    Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam's feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species. Changes in ocean temperature and pH will impact on species, as well as impacting on community interactions. Here warming and acidification cause a clam species to change their feeding mode, with cascading effects for the marine sedimentary food web

    Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red Tide

    Get PDF
    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red tides have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    Algal Toxins Alter Copepod Feeding Behavior

    Get PDF
    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods
    corecore