
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles 

2008 

Ocean urea fertilization for carbon credits poses high ecological Ocean urea fertilization for carbon credits poses high ecological 

risks risks 

PM Glibert 

R Azanza 

M Burford 

K Furuya 

E Abal 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons 

Recommended Citation Recommended Citation 
Glibert, PM; Azanza, R; Burford, M; Furuya, K; Abal, E; Bronk, D. A.; and Et al., "Ocean urea fertilization for 
carbon credits poses high ecological risks" (2008). VIMS Articles. 985. 
https://scholarworks.wm.edu/vimsarticles/985 

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in 
VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact 
scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsarticles/985?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Authors Authors 
PM Glibert, R Azanza, M Burford, K Furuya, E Abal, D. A. Bronk, and Et al. 

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/985 

https://scholarworks.wm.edu/vimsarticles/985


Ocean Urea Fertilization for Carbon Credits Poses High 
Ecological Risks

A full list of authors and affiliations appears at the end of the article.

Abstract

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine 

biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester 

carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some 

cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological 

pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the 

estimation of a net loss of carbon from the atmosphere questionable at best. The potential for 

growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase 

their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the 

sediment and germinate in subsequent years, forming new blooms even without further 

fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the 

bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further 

limiting the potential for net carbon sequestration. The environmental and economic impacts are 

potentially great and need to be rigorously assessed.
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Introduction

Large-scale ocean enrichment experiments have been conducted over the past two decades 

to understand the response of the oceans to limiting nutrients. Most of these experiments 

have involved iron additions to the equatorial North Pacific, the subarctic Pacific, and the 

Southern Ocean, which are regions known as high-nutrient, low-chlorophyll (HNLC) areas 

where there is apparent ample macro-nutrient availability (nitrogen, phosphorus), but limited 

micro-nutrients (iron), and thus limited phytoplankton accumulation (de Baar et al. 2005, 

Boyd et al. 2007, Buesseler et al. 2008). Application of such research has led some to 

suggest that with such ocean enrichment, carbon sequestration can be enhanced, and this 

may serve as one approach to reduce the build-up of greenhouse gases in the atmosphere.

Iron experiments, now totaling more than a dozen (de Baar et al. 2005, Boyd et al. 2007, 

Buesseler et al. 2008), have shown that phytoplankton blooms can be successfully 
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manufactured, and this has caught the attention of the business community as a means to 

promote engineered solutions to climate change. The carbon-offsets market is rapidly 

expanding, and new enterprises are seeking methods to sequester atmospheric carbon as part 

of cap-and-trade programs. If phytoplankton blooms can lock away carbon through sinking 

to the deep sea, the market for these carbon offsets could be very large, particularly if an 

international quota system for carbon trading is agreed upon. However, large-scale 

manipulation of iron in regions of the ocean where this element is limiting is economically 

unfeasible. Thus, entrepreneurs are turning to regions where the limiting nutrient is nitrogen, 

not iron, with the hopes of enriching waters with this element.

A current plan, as announced by the Ocean Nourishment Corporation of Sydney, Australia, 

calls for the dispersement of 1000 tonnes of urea in the Sulu Sea, off the coast of the 

Philippines beginning in 2008 (Young 2007), although preliminary trials apparently have 

already begun (Aning 2007). Broader oceanic applications are also projected beyond the 

Sulu Sea in the future (http://www.oceannourishment.com/technology.asp). The goal is not 

only to remove carbon from the atmosphere by increasing algal biomass production and 

sequestration through sinking, but also to enhance primary production that leads to enhanced 

local fish production.

The effects of nutrient enrichment on an ecosystem must be considered from multiple 

perspectives, including physical, biological, and socioeconomic aspects (e.g. Nixon 1995, 

Howarth et al. 2000, Cloern 2001). Urea ((NH2)2CO) is a nitrogen fertilizer and feed 

additive, the global use of which has increased 100-fold in the past 4 decades (Glibert et al. 

2006), and there is a large and growing body of literature on nitrogen cycling and urea 

metabolism by phytoplankton. These data permit us to propose several specific predictions 

about the Sulu Sea in particular and the fate of urea pumped into tropical or subtropical seas 

in general. Here we argue that this plan will likely not lead to enhanced fisheries or carbon 

sequestration. Instead, there is a real possibility that fisheries and the regional aquatic 

ecosystem could be significantly damaged for years to come, yielding environmental 

damage that could far outweigh the gains of carbon offsets.

The Sulu Sea

The Sulu Sea, a deep oceanic basin, is isolated from the surrounding ocean by a chain of 

islands, making it a region of restricted water exchange (Jones 2002). It is connected to the 

South China Sea in the south through the Balabac Strait, and in the north via the Palawan 

shelf and Mindoro Strait (Jones 2002, Campos and Villanoy 2007). These connections are 

believed to be pathways for water exchange and, more importantly, for plankton and larval 

exchange between adjacent basins, the so-called “marine corridors”. The region also 

supports high biodiversity and abundant marine corals (e.g, Nanola et al. 2004). Some of the 

richest fishing grounds of the Philippines are located in the Sulu Sea, as are the Tubbataha 

Reefs, a World Heritage Site (Aning 2007). It has been said that, “Tubbataha’s marine 

biodiversity is virtually unparalleled by any other in the world today” (Mission 1999). It is 

well established that nitrogen loading in coral reef areas can lead to community shifts 

towards algal overgrowth of corals and ecosystem disruption (Smith et al. 1981, Lapointe 
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1999; McCook et al. 2001a,b). This fact alone makes this region an inappropriate candidate 

for such experimentation.

Elemental stoichiometry : Limits to carbon biomass from nitrogen 

enrichment

Nitrogen fertilization stimulates the production of a higher phytoplankton biomass, but only 

to the extent that other nutrients are not also limiting. The chemical composition, by atoms, 

of a typical algal cell is 106 carbon: 16 nitrogen: 1 phosphorus: 0.0001 iron. Therefore, for 

each added unit of iron, about 1,000,000 units of carbon biomass can be produced, assuming 

all other elements are sufficiently available. However, for each unit of nitrogen that is added 

to a nitrogen-limited region, only ~7 units of carbon biomass can be produced; large 

amounts of nitrogen produce smaller amounts of carbon biomass than do large iron 

additions.

The plan by the Ocean Nourishment Corporation suggests that other elements, beyond 

carbon and nitrogen from urea, may be added in the addition “mix”, but in unspecified 

proportions. While global estimates of dissolved inorganic phosphorus for the basins of the 

South Pacific do suggest that natural phosphorus yield is moderately high (Harrison et al. 

2005), the availability is far from that required to balance phytoplankton uptake of the 

additional urea in the proportion needed to sustain growth (e.g. Redfield et al. 1963). 

Noteably, while an N:P ratio of 16 is an average, the N:P requirement of cyanobacteria is 

higher than the canonical 16 (Geider and LaRoche 2002). Thus, depending on the 

stoichiometry of concomitant additions of phosphorus and other micronutrients, the added 

urea may not yield the expected biomass or may only yield biomass of organisms with a 

high N:P ratio such as cyanobacteria and picoeukaryotes.

Urea fertilization likely to have eutrophication impacts

In addition to the specific regional concerns about the potential loss in biodiversity in the 

Sulu Sea, were urea fertilization to be undertaken at large scale there are other significant 

concerns which may apply to other tropical or subtropical regions.

While stoichiometry argues against efficient conversion of added urea to algal biomass, any 

increased algal biomass is of concern. The goal of the proposed plan is to enhance 

phytoplankton biomass to a concentration of 200 μg L−1 of chlorophyll a (Young 2007). This 

is a concentration of biomass that is only observed in the most eutrophic waters, and a level 

that will reduce light penetration that is required to support sustained productivity in the 

euphotic zone (Raymont 1980). In fact, the US National Research Council (1993) has noted 

that chlorophyll a concentrations >10 μg L−1 represents eutrophic waters, and the mean level 

of chlorophyll a in US coastal waters that are classified as eutrophic is only 15 μg L−1. The 

Sulu Sea now has chlorophyll a concentrations that are generally <0.2 μg L−1 (Jones 2002). 

Thus, the proposed enrichment, if successful as planned, would elevate chlorophyll a 
concentrations ~ 3 orders of magnitude.
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Eutrophication causes a myriad of environmental effects, but two are of immediate concern: 

the potential for the development of hypoxic or anoxic zones, regions of reduced dissolved 

oxygen content, and the alteration of species composition leading to harmful algal blooms 

(Howarth et al. 2000, Diaz and Rosenberg 2001, Anderson et al. 2002, Anderson 2004, 

Glibert et al. 2005). High phytoplankton biomass in eutrophic waters is often not efficiently 

transferred to higher trophic levels by zooplankton, as some algae are not palatable to 

zooplankton, and algae have higher growth rates than do zooplankton. In the worse case, 

algae may sink to deeper waters, and cause hypoxia upon their decomposition. Hypoxia and 

anoxia have been associated with algal blooms in many aquatic environments and are 

responsible for fish kills in coastal waters throughout the world. Whether episodic or 

sustained, such “dead zones” are responsible for losses of millions of dollars of commercial 

fish annually (Joyce 2000, Mallin et al. 2006). The morphology and circulation of the Sulu 

Sea support an oxygen minimum zone (OMZ) starting at a depth of about 1000 m. This 

OMZ is maintained by restricted exchange with the South China Sea across the Mindoro 

Strait sill at 420 m depth. Water entering the Sulu Sea from the South China Sea is depleted 

in dissolved oxygen, with levels of about 100 μmol kg−1. Dissolved oxygen in the Sulu Sea 

is about 50 μmol kg−1 from about 1000 m to 5000 m (Gamo et al. 2007). This low dissolved 

oxygen level makes it susceptible to hypoxia and anoxia. Caution must also be exercised 

with any scheme that would increase the oxygen demand in these deep waters, as a declining 

temporal trend in dissolved oxygen has already been documented over the past decade at 

depths of 500–600 m (Gamo et al. 2007). Furthermore, anoxic zones may subsequently 

result in the release of the sequestered CO2 as well as methane (a gas that enhances the 

greenhouse effect) and N2 and N2O from denitrification from any decaying biomass (Granéli 

and Granéli in press), thus counteracting the benefits of any initial carbon sequestration.

Urea fertilization may alter phytoplankton species composition and change 

carbon sequestration efficiency

The efficiency of the urea enrichment program is dependent on the efficiency of carbon 

burial to the deep sea, but burial efficiency will depend on the species composition of the 

stimulated blooms. Urea enrichment is likely to cause alterations in algal species 

composition and a loss if phytoplankton biodiversity. Based on our understanding of 

phytoplankton species dynamics, it is suggested that urea enrichment would preferentially 

lead to the enhanced production of cyanobacteria, picoeukaryotes, and dinoflagellates, rather 

than diatoms (e.g., Berg et al. 2001, Glibert et al. 2004, Solomon 2006, Heil et al. 2007, 

Glibert and Berg 2008). In subtropical regions, not only are rates of urea uptake higher in 

waters in which cyanobacteria are the dominant phytoplankton, but urea uptake is also 

positively correlated with the proportion of phytoplankton composed of cyanobacteria (as 

Synechococcus spp.) in the water column (Glibert et al. 2004). In contrast, the proportion of 

diatom biomass in the water is positively correlated with nitrate uptake and negatively 

correlated with urea uptake (Glibert et al., 2004, Heil et al. 2007). Urea is rapidly hydrolyzed 

to ammonium by the cellular enzyme urease, and the activity of the enzyme is positively 

correlated with temperature (e.g., Fan et al. 2003, Solomon 2006). Thus, the warm waters of 

the South Pacific are in the range of maximal enzyme activity. Furthermore, Synechococcus, 
Prochlorococcus sp. and related pelagic picoeukaryotes, such as Aureococcus 
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anophagefferens, have among the highest rates of urease activity per cell volume of any 

phytoplankton species measured, making them ideal competitors for urea (Fig. 1; Solomon 

2006). A. anophagefferens forms harmful algal blooms in temperate, rather than tropical, 

coastal waters (e.g., Berg et al. 1997, Bricelj and Lonsdale 1997), but related species form 

harmful blooms in coastal lagoons along the Gulf of Mexico, indicating a potential threat of 

such “brown tides” in warmer coastal ecosystems (Buskey et al. 2001). Also common in 

tropical and subtropical regions are the cyanobacteria Trichodesmium spp., which fix 

nitrogen gas and contribute significantly to the biological nitrogen budget of the oceans (e.g. 

Capone et al. 1997, Breitbarth et al. 2007). Trichodesmium spp. have been found to not only 

grow faster on urea than on other fixed nitrogen sources, but when urea is available, 

preferentially use urea over nitrogen obtained from nitrogen fixation (Mulholland et al. 

1999). Moreover, even if urea nitrogen is used by picoeukaryotes and dinoflagellates, they 

do not appear to use the urea carbon when uptake is measured using dually labeled urea (Fan 

and Glibert 2004, Mulholland et al. 2004).

Complicating the carbon sequestration plan is the fact that both Synechococcus and 

Trichodesmium are neutrally or positively buoyant and thus would not have a tendency to 

sink from the euphotic zone (Walsby 1991, Mulholland 2007). This contrasts with diatom 

blooms which tended to proliferate following iron enrichments in the open-ocean 

experiments in the Pacific and Southern Oceans (e.g. de Baar et al. 2005). Diatoms have a 

siliceous shell, while dinoflagellates and cyanobacteria do not, and this results in a strong 

tendency for diatoms to sink out of the surface waters. In fact, when Trichodesmium spp. 

bloom on a large scale, they can form extensive surface scums, some of which have been 

large enough to be visible from space (e.g., Dupouy 1992). Although visibility from space 

may be used to track the development of a phytoplankton bloom, surface slicks and scums 

do not sequester carbon to the deep ocean.

Of particular concern is any potential for an increase in abundance of toxin-producing 

dinoflagellates following urea enrichment. Many species of toxic marine algae bloom in 

response to anthropogenic nutrient loading (Burkholder et al. 1998). In many regions of the 

world where urea dominates the agricultural applications of nitrogen, increasing frequency 

and geographic extent of toxin-producing dinoflagellates have occurred. In fact, a global 

comparison of urea fertilizer use by watershed and the distribution of those dinoflagellates 

that are responsible for paralytic shellfish poisoning, one of the many syndromes caused by 

toxic dinoflagellates, shows apparent correspondence (Fig. 2; Glibert et al. 2006). Toxic 

dinoflagellates are responsible for fish kills as well as the accumulation of toxins in fish and 

shellfish, which in turn may cause serious human health impacts when the seafood is 

consumed (Landsberg 2002, Backer and McGillicuddy 2006).

A bloom of the toxic dinoflagellate species Cochlodinium spp. in 2005–2006, which 

extended ~ 500 km along the western side of Palawan, Philippines, apparently transported 

from Sabah, Malaysia, following the prevailing wind and current systems, caused massive 

fish kills in both countries (Azanza et al. 2008). In the Philippines, other known common 

toxic dinoflagellates are Pyrodinium bahamense and Gymnodinium catenatum, both of 

which cause paralytic shellfish poisoning (Bajarias et al. 2006). The Philippines have long 

Glibert et al. Page 5

Mar Pollut Bull. Author manuscript; available in PMC 2017 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suffered from these toxic outbreaks, with >2000 intoxication events and 123 human deaths 

recorded from contaminated seafood consumption from 1983–2005 (Bajarias et al. 2006).

The relationships between urea and dinoflagellate proliferation are beginning to be 

understood. Dinoflagellates have higher urease activity on a per cell basis than other algal 

species (Fig. 1), further underscoring their likelihood to respond to urea additions. In the 

subtropical waters of Moreton Bay, Australia, the proportion that urea contributed to total 

nitrogen uptake rates was correlated with the percent of the phytoplankton assemblage that 

was composed of dinoflagellates (Glibert et al. 2006). Potentially toxic dinoflagellates 

Lingulodinium polyedrum and Cochlodinium fulvescens that form red-tide blooms off 

California (Kudela and Cochlan, 2000, Kudela et al., 2008) have been shown to utilize urea 

and its degradation product, ammonium, at rates far in excess of nitrate, and based on in situ 
light and nutrient conditions, these nitrogen forms could potentially provide the majority of 

the nitrogen needed to support such blooms. In Thau lagoon, southern France, urea pulses 

were followed by developments of the toxic dinoflagellate Alexandrium catenella (Collos et 

al. 2007).

Even if urea is not immediately used by toxic dinoflagellates, these organisms may 

proliferate over time. Dinoflagellate blooms have been found in association with 

Trichodesmium blooms, for example (Fig. 3), purportedly benefiting from the dissolved 

organic nutrients which are released by the cyanobacteria (Glibert and Bronk 1994, Karl et 

al. 1997, Glibert and O’Neil 1999, Lenes et al. 2001). Some dinoflagellates are also 

mixotrophic and graze on cyanobacteria, bacteria, or other microorganisms to sustain their 

nutrition (e.g., Jeong et al. 2005, Stoecker et al. 2006). Indirect pathways of nutrient 

assimilation and downstream effects must be considered as well as the direct pathways of 

urea assimilation.

Not only is the proliferation of toxic dinoflagellate species associated with higher urea 

loading, but so too is their cellular toxin content. In fact, the toxin content of urea-grown 

paralytic shellfish producing dinoflagellates is greater than that of nitrate-grown cells (Leong 

et al. 2004), as is the neurotoxin content of a dinoflagellate that is common in the Gulf of 

Mexico, Karenia brevis (Shimizu et al. 1993). Some cyanobacteria have also been shown to 

increase their toxicity levels in the presence of excess nitrogen (Stolte et al. 2002, Granéli 

and Flynn 2006).

Many of these common dinoflagellate species are known to produce viable cysts during their 

life cycle (e.g., Anderson et al. 1983, 2003). Cysts may initiate new blooms if conditions are 

suitable, or sustain populaitons throughout the yea, germinating from bottom sediments. If 

cyst-forming species proliferate following fertilization, the numbers of cysts in the sediment 

will increase, thus increasing the probability that blooms of these toxic species will occur in 

subsequent years.

Urea fertilization may not benefit fisheries

In support of urea fertilization, it has been argued that,” For every tonne of reactive nitrogen 

added to the ocean in the form of urea, …5.7 tonnes of phytoplankton will be produced, 
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ultimately leading to roughly an extra tonne of fish” (Young 2007). While trophic transfers 

to fish are known to be inefficient, and to decrease as primary production increases (e.g. 

Ryther 1969), the inefficiencies are particularly large when cyanobacteria and 

dinoflagellates dominate the phytoplankton assemblage (Karl et al. 1997). Many 

cyanobacteria and dinoflagellates are typically considered to be poor quality food for 

zooplankton grazers that support enhanced fish production. Rather, the phytoplankton that 

are likely to be produced from urea fertilization, cyanobacteria and dinoflagellates, will 

more likely lead to an enhanced “microbial loop” in which carbon and nutrients cycle among 

the members of the microbial community and are not efficiently transferred up the food 

chain (Azam et al. 1983). Furthermore, some of the phytoplankton produced may be 

responsible for decreased fish production from potential increased hypoxia and direct 

impacts on fish, or through gill clogging (Burkholder 1998, Landsberg 2002).

Urea in natural waters is metabolized to ammonium through urease enzymes of both 

cyanobacteria and bacteria (e.g. Mobley and Hausinger 1989, Collier et al. 1999, Palinska et 

al. 2000). Ammonium is another form of nitrogen that is preferentially used by 

dinoflagellates, in contrast to diatoms which have been shown to preferentially use nitrate 

under certain environmental conditions (e.g., Lomas and Glibert 1999). Although it is 

impossible to estimate what concentrations of ammonium may result in the water column 

from the planned urea injection, direct toxicity to fish by ammonium/ammonia is also 

possible. At seawater pH, approximately 5% of total ammonia is unionized (NH3), while 

95% is in the ionized form (NH4
+; Millero 2006). Toxicity of NH3 to fish increases not only 

with concentration, but also as oxygen content decreases, and with younger fish (i.e. 

juveniles compared to adults), although highly variable by species and other factors 

(reviewed by Randall and Tsui 2002). Even if it is only 5% of the total ammonia pool, NH3 

could reach toxic levels if concentrations are high enough. The Philippines has expansive 

aquaculture cages for fish production, and these cultured fish are especially vulnerable to 

low oxygen and NH3 toxicity as they cannot escape from their immediate environment. The 

economic loss of fish aquaculture could be substantial. Ammonium can also be volatilized to 

the atmosphere, and carried from the site of original application, and redeposited with 

precipitation (Timperley et al. 1985), leading to potential effects far from the manipulated 

site of interest.

Urea fertilization not likely to sequester carbon to the deep ocean

None of the major ocean fertilization experiments involving iron enrichment was able to 

confirm a significant enhancement of carbon transport to the deeper ocean (e.g. de Barr et al. 

2005, Lutz et al. 2007, Buesseler et al. 2008). Carbon production and transport following 

iron enrichment were found to be dependent on light, temperature, depth of the mixed layer, 

and grazing (de Baar et al. 2005). While massive sedimentation following some blooms has 

been documented, for example following a Phaeocystis sp. bloom in the Antarctic (e.g. 

DiTullio et al. 2000), clear seasonal and biogeographical differences exist in the vertical flux 

and in the efficiency of the biological pump (Lutz et al. 2007). Less carbon is transmitted to 

the deep during warm summers when the community is dominated by species such as 

cyanobacteria and dinoflagellates. In fact, the UN Intergovernmental Panel on Climate 

Change (IPCC; http://www.ipcc.ch/) has examined the ocean fertilization issue and 
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determined that it should not be pursued because there is very little documented increase in 

actual long-term sequestration of CO2 in the deep waters or sediments.

Ocean fertilization programs require well designed verification and 

monitoring

The need to establish global agreements on carbon offsets that are based on sound science is 

underscored by this poorly conceived urea fertilization program. It is not sufficient to verify 

that a bloom develops, for example, using satellite imagery as a measure of the sequestration 

of carbon, which is the proposed method of choice of the commercial enterprise. Such 

information does not provide a quantification of the export out of the surface waters, and 

does not enable quantification of the potential for growth of harmful species. The costs of 

verification of sinking flux and of species compositional changes, particularly harmful 

species enumeration and monitoring must be included in the economic plan of urea 

fertilization.

Carbon offsets may be overestimated

The Ocean Nourishment Corporation has claimed that in the long run, beyond Sulu Sea 

trials, “One Ocean Nourishment plant will remove approximately 5–8 million tonnes of CO2 

from the atmosphere for each year of operation, equivalent to offsetting annual emissions 

from a typical 1200MW coal-fired power station or the short-term sequestration from one 

million hectares of new growth forest” (http://www.oceannourishment.com/technology.asp). 

However, urea production is itself a high-energy consuming process. Urea is produced from 

ammonia and CO2 using energy from natural gas; the ammonium carbamate that is formed 

is subsequently dehydrated at high temperature to form urea and water (European Fertilizer 

Manufacturer Association). The production of ammonia through the Haber Bosch process 

(Smil 2001) uses about 3.4% of global natural gas consumption in support of the worldwide 

demand for nitrogenous fertilizer. The use of fossil fuel in this process releases CO2 which 

had long been buried. Consequently, it is apparent that the CO2 consumed by the 

phytoplankton in any manufactured bloom does not represent the net CO2 flux from urea 

synthesis through consumption. Moreover, the breakdown of urea from biological 

processing in seawater results in the release of CO2 (e.g., Leftley and Syrett 1973, Bekheet 

and Syrett 1977, Ge et al. 1990), further limiting the potential for carbon to be sequestered in 

biomass that sinks.

While the amount of urea to be used in the Sulu Sea is a small fraction (<1 %) of the global 

urea budget, it is worth considering what it would require to use urea fertilization to reduce 

the annual anthropogenic production of atmospheric carbon by just 1% globally, or 20% of 

the reduction required by the Kyoto Protocol (http://ec/europa.eu/environment/climat/

Kyoto.htm). On a global scale, fossil fuel burning yields roughly 8 × 1015 g C yr−1; this is 

similar to global ‘new’ oceanic production (sensu Dugdale and Goering 1967). Thus, in 

order to use oceanic production to sequester 1% of this carbon, it would require 8 × 1013 g C 

yr−1 of additional oceanic carbon production. Conservatively, this would need 1–2 × 1013 g 

N yr−1, assuming high efficiency of conversion of nitrogen to carbon biomass and high 

efficiency of storage of new carbon biomass in the deep ocean, which, for the arguments put 
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forth above, is not realistic. This amount of nitrogen would be roughly equivalent to 10% of 

all the nitrogen fertilizer used in agricultural applications globally at the present time. In 

addition to the environmental problems this would likely cause, the economics of such a 

strategy would also be prohibitive, requiring a 10% increase in natural gas usage, in turn 

putting inflationary pressures on food and fuel costs worldwide.

Conclusions

In sum, the proposed plan for urea fertilization in the oceans to enhance carbon sequestration 

and fish production is a plan that will fail. The economics, efficacy and safety of large scale 

iron fertilization in order to enhance carbon sequestration have been questioned and 

repeatedly debated (e.g. Buesseler et al. 2008). The concerns for nitrogen enhancement in 

the form of urea thus appear to be even greater. Urea enrichment is not likely to produce the 

desired phytoplankton assemblage needed to support enhanced food chains. It also likely 

will not produce a phytoplankton assemblage that will sink and sequester carbon. Instead, 

urea enrichment of the oceans will more than likely lead to increased production of harmful 

algae. Once such harmful algae become established, they can continue to proliferate for 

years to come as nutrients are recycled and regenerated. We urge caution in use of any ocean 

fertilization program, iron or urea, for carbon offsets. Sequestration must be verified, 

biological and biogeochemical impacts on the ecosystem need to monitored, and economic 

models need to be developed that account for any direct and indirect ecological impacts. The 

environmental and economic costs of urea enrichment are potentially great and need to be 

rigorously assessed.
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Figure 1. 
The rate of urease activity, normalized per cell (upper panel) and to cell volume (lower 

panel), for phytoplankton species grown in culture. Species include cyanobacteria 

Prochlorochococcus marinus (Palinska et al. 2000), Synechococcus spp. (Collier et al. 

1999); dinoflagellates Alexandrium fundyense (Dyhrman and Anderson 2003), 

Prorocentrum minimum (Fan et al. 2003, Solomom 2006), Karlodinium veneficum 
(Solomon 2006), Heterocapsa triquetra (Solomon 2006); diatoms Thalassiosira weissflogii 
(Fan et al. 2003, Lomas 2004), Cyclotella cryptica (Oliveira and Antia 1986); pelagophyte 

Aureococcus anophagefferns (Fan et al. 2003); haptophye Isochysis sp. (Solomon 2006); 

and cryptophye Storeolata major (Solomon 2006). Where two entries are given for the same 

species on the figure, the source author is given in parentheses. The asterisk by the value for 

P. marinus in the lower panel indicates that it has been divided by 10 to display on the graph. 

From Solomon (2006).
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Figure 2. 
Global distribution of urea application by watershed (base map) and the global distribution 

of the documented occurrences of paralytic shellfish poisoning. From Glibert and Harrison 

(unpublished).
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Figure 3. 
Percent of dinoflagellates in a phytoplankton assemblage inside a Trichodesmium bloom 

(black bars) compared to the percent of dinoflagellates in an adjacent parcel of water outside 

the bloom (white bars). This time series was for a Trichodesmium bloom off of Heron 

Island, Australia, 1996. The dinoflagellates were dominated by Dinophysis. From O’Neil, 

Glibert, Heil (unpublished).
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