5,262 research outputs found

    Scattering of two-level atoms by delta lasers: Exactly solvable models in atom optics

    Full text link
    We study the scattering of two-level atoms at narrow laser fields, modeled by a δ\delta-shape intensity profile. The unique properties of these potentials allow us to give simple analytic solutions for one or two field zones. Several applications are studied: a single δ\delta-laser may serve as a detector model for atom detection and arrival-time measurements, either by means of fluorescence or variations in occupation probabilities. We show that, in principle, this ideal detector can measure the particle density, the quantum mechanical flux, arrival time distributions or local kinetic energy densities. Moreover, two spatially separated δ\delta-lasers are used to investigate quantized-motion effects on Ramsey interferometry.Comment: 11 pages, 5 figure

    Student teachers' impressions of primary design and technology in English schools: a pilot study

    Get PDF
    This paper arose from a joint Nuffield Foundation and Design and Technology Association seminar in February 2002. One of the recommendations was that primary initial teacher education (ITE) trainers, together with teachers in schools, would use their normal working activities to generate data that can be used as the basis for academic papers. Initially it provides the background to the present research project, focusing on concerns regarding the position and status of design and technology in English primary schools since the introduction of D&T as a compulsory subject of the National Curriculum in 1990. As a result of the seminar a group of ITE providers in South East England from the University of Brighton; Canterbury Christ Church University; Goldsmiths, University of London; Roehampton University and St Mary’s College, Twickenham first met in the Summer of 2004. The aim of the research was to develop a clearer understanding of the position and character of D&T in each ITE provider’s partner schools. Each provider piloted a questionnaire, developed by the group, in 2004-2005 to gather data of primary student teachers’ impressions of D&T and working practices in their placement schools. The paper presents a summary of data from individual institutions and attempts to analyse and highlight some common key issues across the ITE providers. Finally, the paper draws some conclusions from the research and considers their implications for the planning and teaching of the ITE providers’ courses and partnership links with schools in the future. The paper concludes by considering ideas for further research

    Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes

    Get PDF
    The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed

    Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations

    Get PDF
    Conceptually, it is useful to partition the three-dimensional tropical circulation into meridional and zonal components, namely, the Hadley and Walker circulations. The averaging involved in their definitions can introduce ambiguities. These problems can be circumvented by first partitioning the total vertical mass flux into components associated with overturning in the meridional and zonal directions, respectively, called here the local Hadley and local Walker circulations. Defining the local Hadley and local Walker circulations this way ensures the pair of two-dimensional overturning circulations can be added to give the original three-dimensional circulation, even when the averages are taken over limited domains. The method is applied to the vertical motion from the ERA-Interim reanalysis for the period 1979 to 2009. One important result is that the local Hadley circulation responds much more strongly to ENSO than the local Walker circulation, even though the local Walker circulation in the central Pacific weakens during El Niño years and strengthens and widens during La Niña years

    A self-assembled luminescent host that selectively senses ATP in water.

    Get PDF
    Metal-ion-directed self-assembly has been used to construct kinetically inert, water-soluble heterometallic Ru2Re2 hosts that are potential sensors for bioanions. A previously reported metallomacrocycle and a new derivative synthesised by this approach are found to be general sensors for bioanions in water, showing an “off–on” luminescent change that is selective for nucleotides over uncharged nucleobases. Through a change in the ancillary ligands coordinated to the ruthenium centres of the host, an “off–on” sensor has been produced. Whilst this host only shows a modest enhancement in binding affinities for nucleotides relative to the other two host systems, its sensing response is much more specific. Although a distinctive “off–on” luminescence response is observed for the addition of adenosine triphosphosphate (ATP), related structures such as adenine and guanosine triphosphate (GTP) do not induce any emission change in the host. Detailed and demanding DFT studies on the ATP- and GTP-bound host–guest complexes reveal subtle differences in their geometries that modulate the stacking interactions between the nucleotide guests and the ancillary ligands of the host. It is suggested that this change in stacking geometries affects solvent accessibility to the binding pocket of the host and thus leads to observed difference in the host luminescence response to the guests

    Tolerance and detoxification mechanisms to cadmium stress by hyperaccumulator Erigeron annuus include molecule synthesis in root exudate

    Get PDF
    Cadmium (Cd) is one of the most toxic environmental pollutants affecting the growth and reproduction of various plants. Analysis of the biological adaptation and tolerance mechanisms of the hyperaccumulator Erigeron annuus to Cd stress may help identify new plant species for phytoremediation and in optimizing the process. This study is to the first to analyze the molecular composition and diversity of dissolved organic matter (DOM) secreted by roots using FT-ICR MS, and multiple physiological and biochemical indexes of E. annuus seedlings grown in solutions containing 0-200 Cd mu mol L-1. The results showed that E. annuus had strong photosynthetic adaptation and protection ability under Cd stress. Cd was immobilized or compartmentalized by cell walls and vacuoles in the plant, thus alleviating Cd stress. Activation of anti-oxidation defense mechanisms also played an important role in alleviating or eliminating Cd toxicity in E. annuus. High Cd stress promoted production of a higher proportion of new molecules in DOM secreted by E. annuus roots compared to low Cd stress. DOM secreted by roots contributed to plant resistance to Cd-induced stress via producing more carbohydrates, aromatic structures and tannins. Results indicate the mechanisms underpinning the potential use of E. annuus as a phytoremediator in environments with moderate Cd pollution

    Type I restriction endonucleases are true catalytic enzymes

    Get PDF
    Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes

    NGTS-13b: A hot 4.8 Jupiter-mass planet transiting a subgiant star

    Get PDF
    We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with log g_{*} = 4.04 ±\pm 0.05, Teff_{eff} = 5819 ±\pm 73 K, M_{*} = 1.300.18+0.11^{+0.11}_{-0.18} M_{\odot}, and R_{*} = 1.79 ±\pm 0.06 R_{\odot}. NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of RP_{P} = 1.142 ±\pm 0.046 RJup_{Jup}, mass of MP_{P} = 4.84 ±\pm 0.44 MJup_{Jup} and eccentricity e = 0.086 ±\pm 0.034. Some previous studies suggest that \sim4 MJup_{Jup} may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 MJup_{Jup} making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H] = 0.25 ±\pm 0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars
    corecore