1,404 research outputs found

    Dichotomies properties on computational complexity of S-packing coloring problems

    Full text link
    This work establishes the complexity class of several instances of the S-packing coloring problem: for a graph G, a positive integer k and a non decreasing list of integers S = (s\_1 , ..., s\_k ), G is S-colorable, if its vertices can be partitioned into sets S\_i , i = 1,... , k, where each S\_i being a s\_i -packing (a set of vertices at pairwise distance greater than s\_i). For a list of three integers, a dichotomy between NP-complete problems and polynomial time solvable problems is determined for subcubic graphs. Moreover, for an unfixed size of list, the complexity of the S-packing coloring problem is determined for several instances of the problem. These properties are used in order to prove a dichotomy between NP-complete problems and polynomial time solvable problems for lists of at most four integers

    S-Packing Colorings of Cubic Graphs

    Full text link
    Given a non-decreasing sequence S=(s_1,s_2,…,s_k)S=(s\_1,s\_2, \ldots, s\_k) of positive integers, an {\em SS-packing coloring} of a graph GG is a mapping cc from V(G)V(G) to {s_1,s_2,…,s_k}\{s\_1,s\_2, \ldots, s\_k\} such that any two vertices with color s_is\_i are at mutual distance greater than s_is\_i, 1≤i≤k1\le i\le k. This paper studies SS-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are (1,2,2,2,2,2,2)(1,2,2,2,2,2,2)-packing colorable and (1,1,2,2,3)(1,1,2,2,3)-packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 3838 which is not (1,2,…,12)(1,2,\ldots,12)-packing colorable

    A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

    Full text link
    Gy{\'a}rf{\'a}s et al. and Zaker have proven that the Grundy number of a graph GG satisfies Γ(G)≥t\Gamma(G)\ge t if and only if GG contains an induced subgraph called a tt-atom.The family of tt-atoms has bounded order and contains a finite number of graphs.In this article, we introduce equivalents of tt-atoms for b-coloring and partial Grundy coloring.This concept is used to prove that determining if φ(G)≥t\varphi(G)\ge t and ∂Γ(G)≥t\partial\Gamma(G)\ge t (under conditions for the b-coloring), for a graph GG, is in XP with parameter tt.We illustrate the utility of the concept of tt-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 77

    Subdivision into i-packings and S-packing chromatic number of some lattices

    Get PDF
    An ii-packing in a graph GG is a set of vertices at pairwise distance greater than ii. For a nondecreasing sequence of integers S=(s_1,s_2,…)S=(s\_{1},s\_{2},\ldots), the SS-packing chromatic number of a graph GG is the least integer kk such that there exists a coloring of GG into kk colors where each set of vertices colored ii, i=1,…,ki=1,\ldots, k, is an s_is\_i-packing. This paper describes various subdivisions of an ii-packing into jj-packings (j\textgreater{}i) for the hexagonal, square and triangular lattices. These results allow us to bound the SS-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i,i∈N∗)S=(s\_{i}, i\in\mathbb{N}^{*}), s_i=d+⌊(i−1)/n⌋s\_{i}=d+ \lfloor (i-1)/n \rfloor

    Constraints on the location of a possible 9th planet derived from the Cassini data

    Full text link
    To explain the unusual distribution of Kuiper Belt objects, several authors have advocated the existence of a super-Earth planet in the outer solar system. It has recently been proposed that a 10 M⊕_{\oplus} object with an orbit of 700 AU semi major axis and 0.6 eccentricity can explain the observed distribution of Kuiper Belt objects around Sedna. Here we use the INPOP planetary ephemerides model as a sensor for testing for an additional body in the solar system. We test the possibility of adding the proposed planet without increasing the residuals of the planetary ephemerides, fitted over the whole INPOP planetary data sample. We demonstrate that the presence of such an object is not compatible with the most sensitive data set, the Cassini radio ranging data, if its true anomaly is in the intervals [−130∘:−100∘][-130^\circ:-100^\circ] or [−65∘:85∘][-65^\circ : 85^\circ]. Moreover, we find that the addition of this object can reduce the Cassini residuals, with a most probable position given by a true anomaly v=117.8∘−10∘+11∘v = {117.8^\circ}^{ + 11^\circ}_{ - 10^\circ} .Comment: Accepted for publication in A&A; 4 pages, 6 figure

    Forecasting world and regional aviation Jet-Fuel demands to the mid term (2025).

    Get PDF
    This article provides jet fuel demand projections at the worldwide level and for eight geographical zones until 2025. Air traffic forecasts are performed using dynamic panel-data econometrics. Then, the conversion of air traffic projections into quantities of jet fuel is accomplished by using a complementary approach to the ‘Traffic Efficiency’ method developed previously by the UK Department of Trade and Industry to support the Intergovernmental Panel on Climate Change (IPCC, 1999). According to our main scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of 4.7%. World jet fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of 1.9% per year. According to these results, energy efficiency improvements allow reducing the effect of air traffic rise on the increase in jet fuel demand, but do not annihilate it. Jet fuel demand is thus unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted.Energy efficiency; Jet fuel demand forecasts; Macro-level methodology;
    • …
    corecore