20 research outputs found

    Quantification of Canine Dental Plaque Using Quantitative Light-Induced Fluorescence

    Get PDF
    The aim of this work was to evaluate Quantitative Light-induced Fluorescence (QLFTM) as an alternative to the established Logan and Boyce method for determining plaque coverage of dogs’ teeth. In a series of studies in conscious and anesthetized dogs, QLF showed good intra-photographer repeatability (coefficient of variation [CV] of 7.5% for undisclosed teeth) and inter-photographer reproducibility (CV of 3.2% for undisclosed teeth and 8.5% for disclosed teeth). The QLF software accurately identifies areas of plaque as demonstrated by comparison to the variability of 5 human scorers, manually marking plaque on QLF-acquired images (P = 0.1). There was good agreement with the modified Logan and Boyce method in the percentage reduction in plaque accumulation measured when dogs were fed an oral care chew versus no chew. To see a 15% difference in plaque accumulation, which is considered sufficient by the Veterinary Oral Health Council to differentiate between 2 treatments, a retrospective power analysis (90%) of the data established that only 7 dogs would be required, compared to 19 dogs for the modified Logan and Boyce method. QLF is a reliable method for measuring dental plaque in dogs with the added advantage that it is not subjective and requires fewer animals

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Soil conservation issues in India

    Get PDF
    Despite years of study and substantial investment in remediation and prevention, soil erosion continues to be a major environmental problem with regard to land use in India and elsewhere around the world. Furthermore, changing climate and/or weather patterns are exacerbating the problem. Our objective was to review past and current soil conservation programmes in India to better understand how production-, environmental-, social-, economic- and policy-related issues have affected soil and water conservation and the incentives needed to address the most critical problems. We found that to achieve success in soil and water conservation policies, institutions and operations must be co-ordinated using a holistic approach. Watershed programmes have been shown to be one of the most effective strategies for bringing socio-economic change to different parts of India. Within both dryland and rainfed areas, watershed management has quietly revolutionized agriculture by aligning various sectors through technological soil and water conservation interventions and land-use diversification. Significant results associated with various watershed-scale soil and water conservation programmes and interventions that were effective for reducing land degradation and improving productivity in different parts of the country are discussed

    Water Saving in Rice-Wheat Systems

    No full text
    Water shortage is a major constraint to sustaining and increasing the productivity of rice-wheat systems. Saving water can be elusive in that reducing seepage, percolation and runoff losses from fields does not necessarily save water if it can be recaptured at some other temporal or spatial scale, for example by groundwater pumping. Many technologies appear to save substantial amounts of water through reducing irrigation water requirement, but whether these are true water savings is uncertain as components of the water balance have not been quantified. Such technologies include laser levelling, direct drilling, raised beds, non-ponded rice culture and irrigation scheduling. It is questionable whether puddling saves water. Reducing non-beneficial evaporation losses is a true water saving, and optimal planting time of rice to avoid the period of highest evaporative demand and changing to non-ponded rice culture can save significant amounts of water. However, moving away from puddled, ponded to more aerobic rice culture sometimes brings new production problems. Furthermore, farmers faced with unreliable water supplies need to store water on their fields as insurance, and puddling assists retention of water during the rice crop. Rehabilitation and improvement of canal and power systems in Asia, funded by charging according to use, are required to facilitate adoption of many water saving technologies. Australian farmers pay fixed plus volumetric charges for water to cover the cost of infrastructure and operation of irrigation systems, which are continuously being improved to provide water on demand and minimise losses. They are able to plan their plantings based on knowledge of the likely amount of irrigation water available each season and crop water use requirement, and thus avoid wasting water and financial loss by overplanting and crop failure. Such approaches have the potential to increase production and water productivity in Asia, however the challenge would be to apply them in an equitable way that benefits many millions of subsistence farmers

    Nutrient Management and Use Efficiency in Wheat Systems of South Asia

    No full text

    The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    No full text
    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy

    The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Get PDF
    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p. Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A: p. Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mislocalization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A: p. Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy
    corecore