75 research outputs found

    New insights to the photometric structure of Blue Compact Dwarf Galaxies from deep Near-Infrared studies: II. The sample of northern BCDs

    Full text link
    This paper is part of a series of publications which present a systematic study of Blue Compact Dwarf (BCD) Galaxies in the Near Infrared (NIR). Compared to the visible light, NIR data allow a better separation of the starburst emission from the light distribution of the old stellar low-surface brightness (LSB) host galaxy. We analyze deep NIR broad band images of a sample of 11 BCDs, observed with the Calar Alto 3.6m telescope. This work enlarges the samples presented in preceding papers of this study (Noeske et al. 2003, Cairos et al. 2003) by BCDs of the most common morphological type, displaying a regular elliptical LSB host galaxy. The data presented here allow the detection and quantitative study of the extended stellar LSB host galaxy in all sample BCDs. The NIR surface brightness profiles (SBPs) of the LSB host galaxies agree at large galactocentric radii with those from optical studies, showing also an exponential intensity decrease and compatible scale lengths. Similar to Noeske et al. (2003), we find centrally flattening exponential (type V) SBPs of the host galaxy for several BCDs. Such SBPs remain mostly undetected in optical bands, due to the comparatively stronger starburst emission at these wavelengths. We apply a modified exponential distribution to decompose and quantitatively analyze SBPs of LSB hosts with a type V intensity distribution. We present the results of the surface photometry and the decomposition of SBPs, and discuss individual objects with respect to morphological details of their star-forming regions.Comment: 18 pages, 11 figures; accepted for publication in Astronomy & Astrophysics; postscript file with full resolution images available at http://www.ucolick.org/~kai/PUB/noeske_nirbcds_2.ps.g

    Limits on the Transverse Velocity of the Lensing Galaxy in Q2237+0305 from the Lack of Strong Microlensing Variability

    Full text link
    We present a method for the determination of upper limits on the transverse velocity of the lensing galaxy in the quadruple quasar system Q2237+0305, based on the lack of strong microlensing signatures in the quasar lightcurves. The limits we derive here are based on four months of high quality monitoring data, by comparing the low amplitudes of the lightcurves of the four components with extensive numerical simulations. We make use of the absence of strong variability of the components (especially components B and D) to infer that a "flat" time interval of such a length is only compatible with an effective transverse velocity of the lensing galaxy of v_bulk <=630 km/s for typical microlenses masses of M_microlens=0.1 M_solar (or v_bulk <=2160 km/s for M_microlens=1.0 M_solar) at the 90% confidence level. This method may be applicable in the future to other systems.Comment: 7 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Measuring transverse velocities in gravitationally lensed extragalactic systems using an annual parallax effect

    Full text link
    A parallax method to determine transverse velocity in a gravitationally lensed system is described. Using the annual motion of the Earth around the Sun allows us to probe the local structure of the magnification map that, under certain assumptions, can be used to infer the effective transverse velocity. The method is applied to OGLE data for QSO2237+0305 and the velocity value is estimated to be about (15 +/- 10) km/s if attributed to the lensing galaxy or about (420 +/- 300) km/s if attributed to the quasar. We find this estimate unreasonably small and conclude that we have not measured a parallax effect. We give a short list of properties that a system should possess to allow a successful implementation of this method.Comment: v2: journal reference update

    Dynamics of Starbursting Dwarf Galaxies: I Zw 18

    Get PDF
    I Zw 18 is a prototype Blue Compact Dwarf (BCD), characterized by a strong starburst and extremely low metallicity (Z ~ 0.02 Zsun). It has long been considered a candidate young galaxy in the Local Universe, but recent studies indicate the presence of old stars. We analysed archival VLA observations of the 21 cm line and found that the HI associated to the starburst region forms a compact fast-rotating disk. The HI column densities are very high, up to ~50-100 Msun/pc^2 (~0.6-1.2 x 10^22 atoms/cm^2). The rotation curve is flat with a steep rise in the inner parts, indicating the presence of a strong central concentration of mass. Mass models with a dark matter halo show that baryons may dominate the gravitational potential in the inner regions. A radial inflow/outflow motion of ~15 km/s is also present. I Zw 18 appears structurally different from typical dwarf irregulars in terms of gas distribution, stellar distribution and dynamics. It may be considered as a "miniature" high-surface-brightness disk galaxy. These dynamical properties must be tightly related to the starburst. They also shed new light on the question of the descendants of BCDs. There is also extended HI emission towards the outlying stellar complex I Zw 18 C and a ~13.5 kpc HI tail. An interaction/merger between gas-rich dwarfs is the most likely explanation for the starburst.Comment: 13 pages, 10 figures, to be published in Astronomy & Astrophysic

    Weak lensing reconstruction through cosmic magnification I: a minimal variance map reconstruction

    Full text link
    We present a concept study on weak lensing map reconstruction through the cosmic magnification effect in galaxy number density distribution. We propose a minimal variance linear estimator to minimize both the dominant systematical and statistical errors in the map reconstruction. It utilizes the distinctively different flux dependences to separate the cosmic magnification signal from the overwhelming galaxy intrinsic clustering noise. It also minimizes the shot noise error by an optimal weighting scheme on the galaxy number density in each flux bin. Our method is in principle applicable to all galaxy surveys with reasonable redshift information. We demonstrate its applicability against the planned Square Kilometer Array survey, under simplified conditions. Weak lensing maps reconstructed through our method are complementary to that from cosmic shear and CMB and 21cm lensing. They are useful for cross checking over systematical errors in weak lensing reconstruction and for improving cosmological constraints.Comment: 12 pages, 9 figures, published in MNRA

    Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes

    Get PDF
    BACKGROUND: Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. METHODS AND FINDINGS: Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42) pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti–CD40 ligand (anti-CD40L) attained normal blood glucose levels, eliminating the need for insulin. CONCLUSIONS: These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes

    Gas Metallicities in the Extended Disks of NGC 1512 and NGC 3621. Chemical Signatures of Metal Mixing or Enriched Gas Accretion?

    Full text link
    (Abridged) We have obtained spectra of 135 HII regions located in the inner and extended disks of the spiral galaxies NGC 1512 and NGC 3621, spanning the range of galactocentric distances 0.2-2 x R25 (from 2-3 kpc to 18-25 kpc). We find that the excitation properties of nebulae in the outer (R>R25) disks are similar to those of the inner disks, but on average younger HII regions tend to be selected in the bright inner disks. Reddening by dust is not negligible in the outer disks, and subject to significant large-scale spatial variations. For both galaxies the radial abundance gradient flattens to a constant value outside of the isophotal radius. The outer disk O/H abundance ratio is highly homogeneous, with a scatter of only ~0.06 dex. Based on the excitation and chemical (N/O ratio) analysis we find no compelling evidence for variations in the upper initial mass function of the ionizing clusters of extended disks. The O/H abundance in the outer disks of the target galaxies corresponds to 35% of the solar value (or higher, depending on the metallicity diagnostic). This conflicts with the notion that metallicities in extended disks of spiral galaxies are necessarily low. The observed metal enrichment cannot be produced with the current level of star formation. We discuss the possibility that metal transport mechanisms from the inner disks lead to metal pollution of the outer disks. Gas accretion from the intergalactic medium, enriched by outflows, offers an alternative solution.Comment: Accepted for publication in the Astrophysical Journa

    Luminosity-Metallicity Relation for dIrr Galaxies in the Near-Infrared

    Full text link
    (abridged) The present work is a first step to collect homogeneous abundances and near-infrared (NIR) luminosities for a sample of dwarf irregular (dIrr) galaxies, located in nearby groups. The use of NIR luminosities is intended to provide a better proxy to mass than the blue luminosities commonly used in the literature; in addition, selecting group members reduces the impact of uncertain distances. Accurate abundances are derived to assess the galaxy metallicity. Optical spectra are collected for Hii regions in the dIrrs, allowing the determination of oxygen abundances by means of the temperature-sensitive method. For each dIrr galaxy H-band imaging is performed and the total magnitudes are measured via surface photometry. This high-quality database allows us to build a well-defined luminosity-metallicity relation in the range -13 >= M(H) >= -20. The scatter around its linear fit is reduced to 0.11 dex, the lowest of all relations currently available. There might exist a difference between the relation for dIrrs and the relation for giant galaxies, although a firm conclusion should await direct abundance determinations for a significant sample of massive galaxies. This new dataset provides an improved luminosity-metallicity relation, based on a standard NIR band, for dwarf star-forming galaxies. The relation can now be compared with some confidence to the predictions of models of galaxy evolution. Exciting follow-ups of this work are (a) exploring groups with higher densities, (b) exploring nearby galaxy clusters to probe environmental effects on the luminosity-metallicity relation, and (c) deriving direct oxygen abundances in the central regions of star-forming giant galaxies, to settle the question of a possible dichotomy between the chemical evolution of dwarfs and that of massive galaxies.Comment: 23 pages, 10 figures, accepted by A&

    Two phase galaxy formation: The Gas Content of Normal Galaxies

    Get PDF
    We investigate the atomic (HI) and molecular (H_2) Hydrogen content of normal galaxies by combining observational studies linking galaxy stellar and gas budgets to their host dark matter (DM) properties, with a physically grounded galaxy formation model. This enables us to analyse empirical relationships between the virial, stellar, and gaseous masses of galaxies and explore their physical origins. Utilising a semi-analytic model (SAM) to study the evolution of baryonic material within evolving DM halos, we study the effects of baryonic infall and various star formation and feedback mechanisms on the properties of formed galaxies using the most up-to-date physical recipes. We find that in order to significantly improve agreement with observations of low-mass galaxies we must suppress the infall of baryonic material and exploit a two-phase interstellar medium (ISM), where the ratio of HI to H_2 is determined by the galactic disk structure. Modifying the standard Schmidt-Kennicutt star formation law, which acts upon the total cold gas in galaxy discs and includes a critical density threshold, and employing a star formation law which correlates with the H_2 gas mass results in a lower overall star formation rate. This in turn, allows us to simultaneously reproduce stellar, HI and H_2 mass functions of normal galaxies.Comment: 16 pages, 12 figures, 1 table. Moderate revision to match version accepted for publication in MNRA
    corecore