721 research outputs found

    SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae

    Get PDF
    Segregation of replicated chromosomes is an essential process in all organisms. How bacteria, such as the oval-shaped human pathogen Streptococcus pneumoniae, efficiently segregate their chromosomes is poorly understood. Here we show that the pneumococcal homologue of the DNA-binding protein ParB recruits S. pneumoniae condensin (SMC) to centromere-like DNA sequences (parS) that are located near the origin of replication, in a similar fashion as was shown for the rod-shaped model bacterium Bacillus subtilis. In contrast to B. subtilis, smc is not essential in S. pneumoniae, and Δsmc cells do not show an increased sensitivity to gyrase inhibitors or high temperatures. However, deletion of smc and/or parB results in a mild chromosome segregation defect. Our results show that S. pneumoniae contains a functional chromosome segregation machine that promotes efficient chromosome segregation by recruitment of SMC via ParB. Intriguingly, the data indicate that other, as of yet unknown mechanisms, are at play to ensure proper chromosome segregation in this organism.

    Toxin–antitoxin based transgene expression in mammalian cells

    Get PDF
    Long-term, recombinant gene expression in mammalian cells depends on the nature of the transgene integration site and its inherent properties to modulate transcription (epigenetic effects). Here we describe a method by which high transgene expression is achieved and stabilized in extensively proliferating cultures. The method is based on strict co-expression of the transgene with an antitoxin in cells that express the respective toxin. Since the strength of antitoxin expression correlates with an advantage for cell growth, the cells with strong antitoxin expression are enriched over time in cultures of heterogeneous cells. This principle was applied to CHO cell lines that conditionally express the toxin kid and that are transduced to co-express the antitoxin kis together with different transgenes of interest. Cultivation of pools of transfectants that express the toxin steadily increase their transgene expression within several weeks to reach a maximum that is up to 120-fold over the initial status. In contrast, average transgene expression drops in the absence of toxin expression. Together, we show that cells conditionally expressing kid can be employed to create overexpressing cells by a simple coupling of kis to the transgene of interest, without further manipulation and in absence of selectable drugs

    Putting the genome on the map

    Get PDF
    The maps of our everyday lives are much more than just linear lists of place names. Instead, their colours, symbols, contours and grid lines seek to describe different types of landscape, and to depict the spatial relationships between structural and functional landmarks of the environment (Fig. 1). It was the combination of photography and aviation that revolutionized mapmaking in the early part of this century. In much the same way, it is fluorescence microscopy and digital imaging (Box 1) in combination with molecular genetics that is driving our emerging view of the genome in space and time

    Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis

    Get PDF
    Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription

    The impact of signal-to-noise ratio, diffusion-weighted directions and image resolution in cardiac diffusion tensor imaging - insights from the ex-vivo rat heart

    Get PDF
    Background: Cardiac diffusion tensor imaging (DTI) is limited by scan time and signal-to-noise (SNR) restrictions. This invariably leads to a trade-off between the number of averages, diffusion-weighted directions (ND), and image resolution. Systematic evaluation of these parameters is therefore important for adoption of cardiac DTI in clinical routine where time is a key constraint. Methods: High quality reference DTI data were acquired in five ex-vivo rat hearts. We then retrospectively set 2 ≤ SNR ≤ 97, 7 ≤ ND ≤ 61, varied the voxel volume by up to 192-fold and investigated the impact on the accuracy and precision of commonly derived parameters. Results: For maximal scan efficiency, the accuracy and precision of the mean diffusivity is optimised when SNR is maximised at the expense of ND. With typical parameter settings used clinically, we estimate that fractional anisotropy may be overestimated by up to 13% with an uncertainty of ±30%, while the precision of the sheetlet angles may be as poor as ±31°. Although the helix angle has better precision of ±14°, the transmural range of helix angles may be under-estimated by up to 30° in apical and basal slices, due to partial volume and tapering myocardial geometry. Conclusions: These findings inform a baseline of understanding upon which further issues inherent to in-vivo cardiac DTI, such as motion, strain and perfusion, can be considered. Furthermore, the reported bias and reproducibility provides a context in which to assess cardiac DTI biomarkers

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    The stb Operon Balances the Requirements for Vegetative Stability and Conjugative Transfer of Plasmid R388

    Get PDF
    The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation) and a propagation mode (conjugation). The consequences of this novel concept in plasmid physiology will be discussed

    Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS

    Get PDF
    Background Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results EAE disease course was slightly attenuated in male apoE-deficient (apoE −/− ) mice compared to wildtype mice (cumulative median score: apoE −/−  = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE −/− mice compared to wildtype mice (cumulative median score: apoE −/−  = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease
    corecore