83 research outputs found
Recommended from our members
Observations of Coupling between Surface Wind Stress and Sea Surface Temperature in the Eastern Tropical Pacific
Satellite measurements of surface wind stress from the QuikSCAT scatterometer and sea surface temperature (SST) from the Tropical Rainfall Measuring Mission Microwave Imager are analyzed for the three-month period 21 Julyâ20 October 1999 to investigate oceanâatmosphere coupling in the eastern tropical Pacific. Oceanic tropical instability waves (TIWs) with periods of 20â40 days and wavelengths of 1000â2000 km perturb the SST fronts that bracket both sides of the equatorial cold tongue, which is centered near 1°S to the east of 130°W. These perturbations are characterized by cusp-shaped features that propagate systematically westward on both sides of the equator. The spaceâtime structures of these SST perturbations are reproduced with remarkable detail in the surface wind stress field. The wind stress divergence is shown to be linearly related to the downwind component of the SST gradient with a response on the south side of the cold tongue that is about twice that on the north side. The wind stress curl is linearly related to the crosswind component of the SST gradient with a response that is approximately half that of the wind stress divergence response to the downwind SST gradient. The perturbed SST and wind stress fields propagate synchronously westward with the TIWs. This close coupling between SST and wind stress supports the Wallace et al. hypothesis that surface winds vary in response to SST modification of atmospheric boundary layer stability
Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers
A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1,2,3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010â2011, after the warmest and freshest Irminger Sea summer on our record, ~40% of the surface freshwater was retained
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
Photophysical consequences of porphyrin tautomerization. Steady-state and time-resolved spectral investigations of a zinc isoporphyrin
Isoporphyrins are porphyrin tautomers with a saturated meso carbon and thus an interrupted Ï system. We report here steady-state optical absorption, fluorescence, and fluorescence polarization data as well as time-resolved results that detail the significant effects of porphyrine tautomerization on the photophysical properties of a metallo-isoporphyrin, zinc 2,3,5,5âČ,7,8,12,18-octamethyl-13,17-bis(3-methoxy-3-oxopropyl) isoporphyrin perchlorate (2). Besides the red-shifted, low-energy absorption bands diagnostic of metallo-isoporphyrins, 2 exhibits a large Stokes shift of its fluorescence emission (approximately 600 cm-1) and an unusually short singlet excited-state lifetime at room temperature (130 ± 15 ps), photophysical properties distinctly different from those of the canonical prophyrin tautomers. The only porphyrins to exhibit marginally similar perturbations of their photophysical properties are those with severely nonplanar macrocyles whose Ï systems are significantly destabilized by the conformational distortions and thus approach the interrupted Ï systems of isoporphyrins (Gentemann et al: J. Am. Chem. Soc. 1994, 116, 7363). In addition to providing the first insights into the photophysical consequences of porphyrin tautomerization, the results for the isoporphyrin further document the sensitivity of the fundamental electronic and excited-state properties of porphyrinic chromophores to modulation of their Ï systems in vitro and, by extrapolation, in vivo as well
Recommended from our members
A reprocessing for climate of sea surface temperature from the Along-Track Scanning Radiometers: initial validation, accounting for skin and diurnal variability
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoyâsatellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates.
Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV 60 kg mâ2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATS
Picosecond to microsecond photodynamics of a nonplanar nickel porphyrin: Solvent dielectric and temperature effects
Distortion of the Ni(porphyrin) ring from planarity does not appreciably affect the decay of the intraligand 1ÏÏ* excited state to the dd state and the vibrational relaxation of the latter. However, the dd excited state is kinetically stabilized at least 100 times in nonpolar solvents at room temperature and 104 times at 80 K, as compared with analogous planar porphyrins. This is caused by a trapping of the excited molecule in a polar conformation that is different from the stable conformation of the ground state. Excited state lifetime of the nonplanar Ni porphyrins is strongly solvent dependent, varying from a few picoseconds in highly polar solvents to about 50 ns in nonpolar solvents and to a few microseconds in solid solutions at 80 K. This remarkable solvent dependence of the excited state dynamics originates in the coupling of the excited state decay with a conformational change. Because of the inherent polarity of the excited state conformation, the rate of the latter increases with the polarity of the solvent
- âŠ