895 research outputs found

    Photometric support for future astonomical research

    Get PDF
    The I.A.P.P.P. is described and how that organization can provide photometric support for future astronomical research projects such as the 1982-1984 eclipse of epsilon Aurigae discussed at this workshop. I.A.P.P.P., International Amateur-Professional Photoelectric Photometry, is an organization founded in Fairborn, Ohio by the authors in 1980. Its purpose is to encourage contact between amateur and professional astronomers interested in photoelectric photometry, for their mutual benefit and for the benefit of astronomical research. Aspects dealt with include instrumentation, electronics, computer hardware and software, observing techniques, data reduction, and observing programs. Starting with the June 1980 issue, I.A.P.P.P. has published the quarterly I.A.P.P.P. Communications. The Communications contain articles dealing with all the above aspects of photoelectric photometry, although it does not publish observational results as such. Photoelectric photometry obtained by amateurs is published in the same journals which publish photometry obtained by professionals

    Giant slip lengths of a simple fluid at vibrating solid interfaces

    Full text link
    It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane configuration a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier Stokes equations with partial slip boundary conditions at the solid fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect slip regime the above mentioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results with those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)

    Casimir energy and geometry : beyond the Proximity Force Approximation

    Full text link
    We review the relation between Casimir effect and geometry, emphasizing deviations from the commonly used Proximity Force Approximation (PFA). We use to this aim the scattering formalism which is nowadays the best tool available for accurate and reliable theory-experiment comparisons. We first recall the main lines of this formalism when the mirrors can be considered to obey specular reflection. We then discuss the more general case where non planar mirrors give rise to non-specular reflection with wavevectors and field polarisations mixed. The general formalism has already been fruitfully used for evaluating the effect of roughness on the Casimir force as well as the lateral Casimir force or Casimir torque appearing between corrugated surfaces. In this short review, we focus our attention on the case of the lateral force which should make possible in the future an experimental demonstration of the nontrivial (i.e. beyond PFA) interplay of geometry and Casimir effect.Comment: corrected typos, added references, QFEXT'07 special issue in J. Phys.

    GRB 081028 and its late-time afterglow re-brightening

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical SocietySwift captured for the first time a smoothly rising X-ray re-brightening of clear non-flaring origin after the steep decay in a long gamma-ray burst (GRB): GRB 081028. A rising phase is likely present in all GRBs but is usually hidden by the prompt tail emission and constitutes the first manifestation of what is later to give rise to the shallow decay phase. Contemporaneous optical observations reveal a rapid evolution of the injection frequency of a fast cooling synchrotron spectrum through the optical band, which disfavours the afterglow onset (start of the forward shock emission along our line of sight when the outflow is decelerated) as the origin of the observed re-brightening. We investigate alternative scenarios and find that the observations are consistent with the predictions for a narrow jet viewed off-axis. The high on-axis energy budget implied by this interpretation suggests different physical origins of the prompt and (late) afterglow emission. Strong spectral softening takes place from the prompt to the steep decay phase: we track the evolution of the spectral peak energy from the γ-rays to the X-rays and highlight the problems of the high latitude and adiabatic cooling interpretations. Notably, a softening of both the high and low spectral slopes with time is also observed. We discuss the low on-axis radiative efficiency of GRB 081028 comparing its properties against a sample of Swift long GRBs with secure Eγ,iso measurements.Peer reviewe

    UBVJHKLM photometry and modeling of R Coronae Borealis

    Get PDF
    We present the results of UBVJHKLM photometry of R CrB spanning the period from 1976 to 2001. Studies of the optical light curve have shown no evidence of any stable harmonics in the variations of the stellar emission. In the L band we found semi-regular oscillations with the two main periods of ~3.3 yr and 11.9 yr and the full amplitude of ~0.8 mag and ~0.6 mag, respectively. The colors of the warm dust shell (resolved by Ohnaka et al. 2001) are found to be remarkably stable in contrast to its brightness. This indicates that the inner radius is a constant, time-independent characteristic of the dust shell. The observed behavior of the IR light curve is mainly caused by the variation of the optical thickness of the dust shell within the interval \tau(V)= 0.2-0.4. Anticorrelated changes of the optical brightness (in particular with P ~ 3.3 yr) have not been found. Their absence suggests that the stellar wind of R CrB deviates from spherical symmetry. The light curves suggest that the stellar wind is variable. The variability of the stellar wind and the creation of dust clouds may be caused by some kind of activity on the stellar surface. With some time lag, periods of increased mass-loss cause an increase in the dust formation rate at the inner boundary of the extended dust shell and an increase in its IR brightness. We have derived the following parameters of the dust shell (at mean brightness) by radiative transfer modeling: inner dust shell radius r_in ~ 110 R_*, temperature T_dust(r_in) ~ 860 K, dust density \rho_dust(r_in) ~ 1.1x10^{-20} g cm^-3, optical depth \tau(V) ~ 0.32 at 0.55 micron, mean dust formation rate [dM/dt]_dust ~ 3.1x10^-9 M_sun / yr, mass-loss rate [dM/dt]_gas ~ 2.1x10^-7 M_sun / yr, size of the amorphous carbon grains <(~) 0.01 micron, and B-V ~ -0.28.Comment: 9 pages, 6 figures, accepted for publication in A&

    Ultrasonographic evaluation of three approaches for botulinum toxin injection into tibialis posterior muscle in chronic stroke patients with equinovarus foot: An observational study

    Get PDF
    Spastic equinovarus (SEV) foot deformity is commonly observed in patients with post-stroke spasticity. Tibialis posterior (TP) is a common target for botulinum toxin type-A (BoNT-A) injection, as a first-line treatment in non-fixed SEV deformity. For this deep muscle, ultrasonographic guidance is crucial to achieving maximum accuracy for the BoNT-A injection. In current clinical practice, there are three approaches to target the TP: an anterior, a posteromedial, and a posterior. To date, previous studies have failed to identify the best approach for needle insertion into TP. To explore the ultrasonographic characteristics of these approaches, we investigated affected and unaffected legs of 25 stroke patients with SEV treated with BoNT-A. We evaluated the qualitative (echo intensity) and quantitative (muscle depth, muscle thickness, overlying muscle, subcutaneous tissue, cross-sectional area) ultrasound characteristics of the three approaches for TP injection. In our sample, we observed significant differences among almost all the parameters of the three approaches, except for the safety window. Moreover, our analysis showed significant differences in cross-sectional area between treated and untreated. Advantages and disadvantages of each approach were investigated. Our findings can thus provide a suitable reference for clinical settings, especially for novice operators

    Casimir energy and entropy between dissipative mirrors

    Full text link
    We discuss the Casimir effect between two identical, parallel slabs, emphasizing the role of dissipation and temperature. Starting from quite general assumptions, we analyze the behavior of the Casimir entropy in the limit T->0 and link it to the behavior of the slab's reflection coefficients at low frequencies. We also derive a formula in terms of a sum over modes, valid for dissipative slabs that can be interpreted in terms of a damped quantum oscillator.Comment: 8 pages, 1 figur

    Afterglow Model for the Radio Emission from the Jetted Tidal Disruption Candidate Swift J1644+57

    Full text link
    The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve of J1644+57 is naturally explained as the transition between these phases. We show that the temporal indices of the pre- and post-break light curve are consistent with those predicted if the CNM has a wind-type radial density profile n ~ 1/r^2. The observed synchrotron frequencies and self-absorbed flux constrain the fraction of the post-shock thermal energy in relativistic electrons epsilon_e ~ 0.03-0.1; the CNM density at 1e18 cm ~ 1-10 1/cm^3; and the initial Lorentz factor Gamma_j ~ 10-20 and opening angle theta_j ~ (0.1-1)Gamma_j^(-1) ~ 0.01-0.1 of the jet. Radio modeling thus provides robust independent evidence for a narrowly collimated outflow. Extending our model to the future evolution of J1644+57, we predict that the radio flux at low frequencies (<~ few GHz) will begin to brighten more rapidly once the characteristic frequency crosses below the self-absorption frequency on a timescale of months (indeed, such a transition may already have begun). Our results demonstrate that relativistic outflows from tidal disruption events provide a unique probe of the conditions in distant, previously inactive galactic nuclei, complementing studies of normal AGN.Comment: 10 pages, 9 figures, now accepted to MNRA

    A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission

    Get PDF
    In this work, we present the results obtained from a multi-wavelength campaign, as well as from the public Swift/BAT, XRT, and UVOT data of GRB 060111B for which a bright optical emission was measured with good temporal resolution during the prompt phase. We identified the host galaxy at R~25 mag; its featureless spectral continuum and brightness, as well as the non-detection of any associated supernova 16 days after the trigger and other independent redshift estimates, converge to z~1-2. From the analysis of the early afterglow SED, we find that non-negligible host galaxy dust extinction, in addition to the Galactic one, affects the observed flux in the optical regime. The extinction-corrected optical-to-gamma-ray spectral energy distribution during the prompt emission shows a flux density ratio Fγ/FoptF_{\gamma}/F_{opt}=0.01-0.0001 with spectral index βγ,opt>βγ\beta_{\gamma,opt}> \beta_{\gamma}, strongly suggesting a separate origin of the optical and gamma-ray components. This result is supported by the lack of correlated behavior in the prompt emission light curves observed in the two energy domains. The properties of the prompt optical emission observed during GRB 060111B favor interpretation of this optical light as radiation from the reverse shock in a thick shell limit and in the slow cooling regime. The expected peak flux is consistent with the observed one corrected for the host extinction, likely indicating that the starting time of the TAROT observations is very near to or coincident with the peak time. The estimated fireball initial Lorentz factor is >260-360 at z=1-2, similar to the Lorentz factors obtained from other GRBs. GRB 060111B is a rare, good test case of the reverse shock emission mechanism in both the X-ray and optical energy ranges.Comment: Accepted for publication in Astronomy and Astrophysics, 15 pages,10 figures and 7 table
    corecore