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1. Introduction
Cardiovascular diseases are among the main causes
of death in Europe and the U.S.A. Because of the very
nature of the heart–the pump that circulates blood in
the body–, all cardiac diseases have mechanical ram-
ifications, in their origin and/or their impact [8, 4]. As a
consequence, many mechanical models of the heart
have been developed until now, with the objective of
better understanding the cardiac mechanics in health
and diseases. A wide variety of approaches has been
employed, with varying complexity at the geometri-
cal, constitutive behavior (passive and active), bound-
ary conditions and coupling (to, e.g., electrophysiology
or poromechanics) levels, depending on the objective
of the model. If early models were naturally simpler
[1, 6], in the past decades very complex finite element
models have been proposed [8, 4]. They have the po-
tentiality to address some of the critical issues of to-
day’s cardiology; however, they usually have a very
high computational cost, which represents a bottle-
neck for further clinical use. Model order reduction
techniques have been proposed to facilitate their use;
however they are still emerging today. The M3DISIM
team at Inria/École Polytechnique has proposed an-
other class of reduced models, based on simplified ge-
ometries and kinematics but containing fully detailed
passive and active constitutive behaviors, and associ-
ated energy-preserving integration schemes [2]. They
have the advantage of relying on clear physical hy-
pothesis. These reduced models can be used in a
first step of model calibration [2], which can be very
computationally demanding when performed directly
on 3D models [3, 5, 4], or in applications where com-
putation speed is critical [7].

2. Methods
In this presentation, we will introduce another reduced
model of the left ventricle, which, in the team’s hier-
archy of models, is located in between the spherical
(which is solved using a set of ordinary differential
equations) and the full 3D model (which corresponds
to a large system of partial differential equations). It is
based on the cylindrical geometry and kinematics pro-
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posed by [6], where a point of coordinates (r0, θ0, z0)
in the reference configuration is transported to the co-
ordinates 

r = r0 + ρ (r0)
θ = θ0 + βz0 + φ (r0)
z = (1 + ε) z0 + ω (r0)

(1)

in the deformed configuration, where ρ characterizes
the radial displacement, β the global twist, φ the in-
plane, radial-circumferential, twist, ε the longitudinal
shortening, and ω the out-of-plane, radial-longitudinal,
twist. Thus, the kinematics is reduced to a manifold
defined by two scalars (β & ε) and three functions
of the radial position r0 (ρ, φ & ω). We developed a
fully dynamic formulation, where the spatial functions
are resolved on a 1D finite element mesh through the
thickness of the ventricle. The main advantage of the
model, compared to the reduced spherical model in-
troduced in [2], is (i) to contain a full description of
the myofiber architecture through the ventricular thick-
ness, and (ii) to describe ventricular twist, while keep-
ing a very small computational cost. In the presenta-
tion, we will provide details on the model formulation
and resolution, as well as extensive cross-validation
with respect to the spherical and full-fledged 3D finite
element models.

3. Results and discussion
Figures 1 & 2 show standard model output for a heart-
beat simulation in the physiological regime.

4. Conclusion
The considered reduced cylindrical ventricular model
lies, in the hierarchy of cardiac models developed
within the M3DISIM team, in between the reduced
spherical model [2] and full 3D models [3]. Thanks to
the proposed efficient finite element-based computa-
tional strategy, it represents a good balance between
model predictivity and computational cost, and could
help pushing computational modeling-based tools in
the clinic.
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Figure 1: Visualization of the reduced cylindrical ventricular model deformation throughout the cardiac cycle.
Full cycle is 800 ms. (The mesh shown here is only for visualization purpose, as only a 1D finite element mesh
is used for the simulation. The reference mesh is shown in wireframe.)
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Figure 2: Pressure-Volume loop (left) and Ventricular twist temporal evolution (right) simulated using the pro-
posed reduced cylindrical ventricular model.
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