105 research outputs found

    Identification of presumed pathogenic KRT3 and KRT12 gene mutations associated with Meesmann corneal dystrophy.

    Get PDF
    PurposeTo report potentially pathogenic mutations in the keratin 3 (KRT3) and keratin 12 (KRT12) genes in two individuals with clinically diagnosed Meesmann corneal dystrophy (MECD).MethodsSlit-lamp examination was performed on the probands and available family members to identify characteristic features of MECD. After informed consent was obtained, saliva samples were obtained as a source of genomic DNA, and screening of KRT3 and KRT12 was performed. Potentially pathogenic variants were screened for in 200 control chromosomes. PolyPhen-2, SIFT, and PANTHER were used to predict the functional impact of identified variants. Short tandem repeat genotyping was performed to confirm paternity.ResultsSlit-lamp examination of the first proband demonstrated bilateral, diffusely distributed, clear epithelial microcysts, consistent with MECD. Screening of KRT3 revealed a heterozygous missense variant in exon 1, c.250C>T (p.(Arg84Trp)), which has a minor allele frequency of 0.0076 and was not identified in 200 control chromosomes. In silico analysis with PolyPhen-2 and PANTHER predicted the variant to be damaging to protein function; however, SIFT analysis predicted tolerance of the variant. The second proband demonstrated bilateral, diffusely distributed epithelial opacities that appeared gray-white on direct illumination and translucent on retroillumination. Neither parent demonstrated corneal opacities. Screening of KRT12 revealed a novel heterozygous insertion/deletion variant in exon 6, c.1288_1293delinsAGCCCT (p.(Arg430_Arg431delinsSerPro)). This variant was not present in either of the proband's parents or in 200 control chromosomes and was predicted to be damaging by PolyPhen-2, PANTHER, and SIFT. Haplotype analysis confirmed paternity of the second proband, indicating that the variant arose de novo.ConclusionsWe present a novel KRT12 mutation, representing the first de novo mutation and the first indel in KRT12 associated with MECD. In addition, we report a variant of uncertain significance in KRT3 in an individual with MECD. Although the potential pathogenicity of this variant is unknown, it is the first variant affecting the head domain of K3 to be reported in an individual with MECD and suggests that disease-causing variants associated with MECD may not be restricted to primary sequence alterations of either the helix-initiation or helix-termination motifs of K3 and K12

    A2A adenosine receptor-driven cAMP signaling in olfactory bulb astrocytes is unaffected in experimental autoimmune encephalomyelitis

    Get PDF
    IntroductionThe cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function.MethodsWe investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice.ResultsThe purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice.DiscussionOur results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice

    Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65

    Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures

    Get PDF
    © 2015, Springer Science+Business Media Dordrecht. Studies in the UK and elsewhere have identified that flooding can result in diverse impacts, ranging from significant financial costs (tangible) to social (intangible) impacts on households. At the same time, it is now clear that large-scale flood defence schemes are not the panacea to flood risk, and there is an increasing responsibility on property owners to protect their own properties. Hence, there is an emerging expectation for homeowners to take action in the form of investing in property level flood risk adaptation (PLFRA) measures to protect their properties. However, hitherto the level of uptake of such measures remains very low. The tangible financial benefits of investing in PLFRA measures are generally well understood and have been demonstrated to be cost beneficial for many properties at risk from frequent flooding. Importantly, these estimates tend to take little account of the value of the intangible benefits of PLFRA measures and therefore may be under estimating their full benefits. There remains a need to develop an improved understanding of these intangible benefits, and this research sets out to bridge this knowledge gap. Based on a synthesis of the literature, the contingent valuation method was selected as a means to value intangible impacts of flooding on households. A questionnaire survey of homeowners affected in the 2007 flooding was employed to elicit willingness to pay (WTP) values to avoid the intangible impacts of flooding on their households. The analysis of the questionnaire survey data revealed that the average WTP per household per year to avoid intangible flood impacts was £653. This therefore represents the value of the intangible benefits of investing in PLFRA measures and is significantly higher than previously estimated. This research builds on previous research in suggesting a higher value to the intangible impacts of flooding on households by assessing wider range of intangible impacts and focussing on more experienced individuals. Furthermore, the research indicates that factors which influence the WTP values were principally stress of flood, worrying about loss of house values, worrying about future flooding and age of respondents, with income showing a weak correlation. The establishment of a new value for the intangible impacts of flooding on households in the UK is helpful in the domain of flood risk management when evaluating the total benefits (tangible and intangible) of investing in flood protection measures, thus providing a robust assessment for decision-making on flood adaptation measures at an individual property level

    ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

    Get PDF
    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms

    ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

    Get PDF
    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    A living WHO guideline on drugs for covid-19

    Get PDF
    CITATION: Agarwal, A. et al. 2022. A living WHO guideline on drugs for covid-19. British Medical Journal, 370. doi:10.1136/bmj.m3379The original publication is available at https://jcp.bmj.com/This living guideline by Arnav Agarwal and colleagues (BMJ 2020;370:m3379, doi:10.1136/bmj.m3379) was last updated on 22 April 2022, but the infographic contained two dosing errors: the dose of ritonavir with renal failure should have read 100 mg, not 50 mg; and the suggested regimen for remdesivir should have been 3 days, not 5-10 days. The infographic has now been corrected.Publishers versio
    • …
    corecore