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ZMYND10 Is Mutated in Primary Ciliary Dyskinesia
and Interacts with LRRC6
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Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections andmale infertility. Using

whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14

families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain

ZMYND10 and LRRC6mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Addi-

tionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of

the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between

ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith

defects and that knockdown inXenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing

ZMYND10 and LRRC6 is necessary for motile ciliary function.
Primary ciliary dyskinesia (PCD) is a rare, Mendelian,

autosomal-recessive disorder caused by defective structure

and function of cilia or flagella and has an incidence of 1 in

16,000 individuals (MIM 244400). Ciliary dysfunction
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causes respiratory distress in term neonates, impaired

mucociliary clearance, chronic cough, sinusitis, bronchiec-

tasis, and male infertility1,2 (also see GeneReviews in Web

Resources). Defective motility of embryonic nodal cilia
lina at Chapel Hill, Chapel Hill, NC 27599, USA; 2Division of Nephrology,

edical School, Boston, MA 02115, USA; 3Department of General Pediatrics,

ent of Molecular and Clinical Genetics, Institute of Human Genetics, Polish

Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland;

wait University, PO Box 24923 Safat, 13110, Kuwait; 7Leeds Institute for

of Leeds, Leeds LS2 9JT, UK; 8Department of Pediatrics, School of Medicine,

edical Research Council Human Genetics Unit, Institute of Genetics and

artment of Pediatrics, The Hospital for Sick Children, University of Toronto,

nn Arbor, MI 48109, USA; 12Nephrology Division, Massachusetts General

ogy, Northwestern University, Chicago, IL 60611, USA; 14Departments of

e, University of California, Los Angeles, Los Angeles, CA 90095, USA; 15Se-

le, WA 98105, USA; 16Department of Medicine, School of Medicine, Univer-

titute of Molecular Medicine, Wellcome Trust Brenner Building, St. James’s

Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;

ra, CO 80045, USA; 20Laboratory of Clinical Infectious Diseases, National

tment of Respiratory Medicine, Concord Hospital, Concord 2139, Australia;

atric Department, Ziv Medical Center, Faculty of Medicine, Bar IIan Univer-

en, Universität Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany;

, 33617 Bielefeld, Nordrhein-Westfalen, Germany; 26Paediatric Pulmonary

ersity Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; 27Department

nnover Medical School, 30625 Hannover, Germany; 28Zagreb Clinical Hos-

Zagreb University, 10000 Zagreb, Croatia; 29University Hospital Muenster,

an Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI

untsville, AL 35806, USA; 32Department of Internal Medicine, University

izin im St. Josef Hospital, Ruhr-Universität Bochum, 44791 Bochum, Ger-
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(required for normal organ asymmetry) leads to situs

abnormalities in ~50% of cases.1–4 The diagnosis of PCD

usually relies on documentation of axonemal ultrastruc-

tural defects, but this complex technique isnotwidely avail-

able and an increasing number of individuals with PCD

have only functional defects with normal ultrastruc-

ture.5,6Currently,mutations in19genes are known to cause

PCD, but these account for only ~65% of cases2,3,7–10 (also

see GeneReviews in Web Resources). Therefore, additional

genetic causes of PCD have yet to be identified.

The finding that each of the recently identified genes

associated with PCD causes only a small number of cases

necessitates an ability to identify additional PCD-causing

mutations in unknown genes in unrelated families. We

therefore developed a strategy that combines whole-

exome resequencing (WER) and homozygosity mapping

in single families and thereby reduces the high number

of false-positive variants resulting from WER.11–14 We

searched for PCD-causingmutations in a worldwide cohort

of sibling pairs and single cases with PCD from 31 different

families (Figure S1, available online). We obtained blood

samples and pedigrees after acquiring informed consent

from individuals with PCD and their family members.

Approval for human subjects research was obtained from

the institutional review boards at the Universities of North

Carolina, Michigan, Freiburg, and Münster and the other

institutions involved. We detected both PCD-causing

alleles of known genes in 16 families, thereby solving

51.6% (16/31) of PCD cases by using this combined

approach of homozygosity mapping and WER (Figure S1

and Tables S1 and S2). We identified mutations in previ-

ously PCD-associated genes, including DNAH5 (MIM

603335), the most frequently mutated in monogenic

PCD15 (five families), CCDC39 (MIM 613798; three

families), CCDC40 (MIM 613799; three families),

DNAH11 (MIM 603339; two families), DNAI2 (MIM

605483; one family),CCDC103 (MIM 614677; one family),

and LRRC6 (MIM 614930; one family).

Homozygosity mapping in an Israeli individual (A4231)

with situs inversus yielded 13 candidate regions of

homozygosity by descent (Figure 1A). By WER we detected

in this individual a homozygous missense variant

(c.1136A>G [p.Tyr379Cys], conserved to D. melanogaster)

in ZMYND10 (zinc finger, MYND-domain-containing 10,

RefSeq accession number NM_015896.2) (Figure 1B and

Table 1). In order to investigate whether ZMYND10 muta-

tions occur in additional individuals with a full PCD

phenotype, we examined a worldwide cohort of over

300 individuals with PCD by exon resequencing of

all 12 ZMYND10 exons by using a high-throughput,

barcoded, next-generation-sequencing technique that we

recently developed (Figure 1C).16 In total, we identified

both disease-causing alleles of ZMYND10 in 14 families

affected by PCD and/or situs inversus and detected

11 different homozygous or compound-heterozygous

ZMYND10 mutations without any predilection for specific

exons (Table 1, Figures 1C–1E, and Figure S2). We thereby
The Amer
identified recessive mutations in ZMYND10 as a cause of

PCD. ZMYND10 (also known as BLU) contains a

C-terminal MYND (myeloid, nervy and DEAF-1) domain

(Figure 1D). ZMYND10 is highly enriched in ciliated cells

compared to nonciliated cells,17 but little is known about

its function. ZMYND10 is known to act as a tumor

suppressor, inhibits clonogenic growth of naso-

pharyngeal carcinoma cells, arrests the cell cycle at the

G1 phase, downregulates JNK (c-Jun N-terminal kinase)

and cyclin D1 promoter activities, and inhibits phosphor-

ylation of c-Jun.18

Transmission electron microscopy (TEM) of samples

from individuals (A5014_188, OI-143 II2, and OP-55 II1)

with ZMYND10 mutations showed a lack of outer dynein

arms (ODAs) and inner dynein arms (IDAs) (Figures 2A–

2D). These findings prompted us to perform immunofluo-

rescence studies for the presence of IDA light-chain protein

DNALI1 and ODA heavy-chain protein DNAH5. We found

that ODA component DNAH5 (Figures 2E–2G and

Figure S3) and IDA component DNALI1 (Figure S4) were

absent in ZMYND10 mutant ciliary axonemes from respi-

ratory epithelia obtained by nasal brushings.

We further confirmed that loss of ZMYND10 impairs

motile ciliary function by knockdown of its zebrafish

ortholog, zmynd10 (Figures 2H–2M0). Specifically, targeting
the zmynd10 ortholog in zebrafish by either translation

blocking (ATG) or exon 3 splice donor (e3i3) antisense

morpholinos (MOs) replicated characteristic ciliopathy

phenotypes, including the appearance of three otoliths,

kidney cysts, and dilated kidney tubules at 2.5 days postfer-

tilization (Figures 2H and 2I, Figure S5, and Table S3). High-

speed-microvideo and kymograph analyses of motile cilia

in the kidney (Figures 2H and 2I0) showed disorganized

cilia bundles with either severely reduced beat amplitude

or paralysis in zmynd10 ATG morphants (Movies S1 and

S2). Similarly, olfactory motile cilia (Figures 2J and 2K0)
were nearly completely paralyzed in zmynd10 ATG mor-

phants (Movies S3 and S4). Similar but milder defects

were observed in zmynd10 e3i3 morphants (Figure S3). In

addition, we performed MO-knockdown studies in

epidermal multiciliated cells of Xenopus laevis embryos

and injected Xenopus embryos with either a start-site

(ATG) or a splice-site (SPL) morpholino targeting zmynd10.

Control embryos contained multiciliated cells with thick

tufts of cilia (Figure S6A). Interestingly, although a large

percentage of cells failed to generate cilia in both mor-

phants (ATG and SPL) because of a substantial defect in

ciliogenesis, the numbers of centrioles appeared normal

(Figures S6B and S6C). Although it is known that cilia on

the surface ofXenopus embryos work to generate a vigorous

flow oriented toward the posterior side of the embryo,19 we

found that morphant embryos generated a significantly

weaker flow as measured by the displacement of fluores-

cent beads across the surface of the embryo (Figure S6D).

Expression studies of fluorescently tagged human LRRC6

and ZMYND10 in the Xenopus epidermal ciliated epithelia

revealed localization to both the basal body and the
ican Journal of Human Genetics 93, 336–345, August 8, 2013 337



Figure 1. Homozygosity Mapping and WER in Family A4231 and Identification of 11 Different Homozygous or Compound-Hetero-
zygous ZMYND10 Mutations in 13 Additional Unrelated PCD-Affected Families
(A) For individual A4231, who has situs inversus, nonparametric LOD (NPL) scores from whole-genome mapping are plotted across the
human genome. The x axis shows Affymetrix 250K StyI array SNP positions on human chromosomes concatenated from pter (left) to
qter (right). Genetic distance is given in cM. Thirteen maximum NPL peaks (red circles) indicate candidate regions of homozygosity by
descent. Note that the ZMYND10 locus (arrow head) is positioned within one of the maximum NPL peaks on chromosome 3p.
(B) Homozygous ZMYND10 mutation detected in family A4231. Family number (underlined), mutation (arrowhead), and predicted
translational changes are indicated (see also Table 1). Sequence trace is shown for the mutation above the normal control.
(C) Exon structure of human ZMYND10 cDNA. The positions of the start codon (ATG) and the stop codon (TGA) are indicated.
(D) Domain structure of ZMYND10. The C terminus contains aMYND (myeloid, Nervy and DEAF-1) domain. The blue bar delineates the
region necessary for interaction with LRRC6 as identified in Figure 1F.
(E) Ten homozygous or compound-heterozygous ZMYND10 mutations detected in 12 PCD-affected families. Family number (under-
lined), mutation, and predicted translational changes are indicated (see Table 1 and Figure S2).
(F) Interaction between the wild-type (WT) and six ZMYND10 variants detected in human PCD (see Table 1) and LRRC6. FLAG-tagged
ZMYND10 andMyc-tagged LRRC6 constructs were transfected into human embryonic kidney 293T (HEK293T) cells and coimmunopre-
cipitated with a FLAG antibody. Note that the three truncating protein alterations (p.Phe101Serfs*38, p.Gln323*, and p.Gln366*)

(legend continued on next page)
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striated rootlet, an appendage that projects away from the

basal body into the cytoplasm (Figures S6E and S6F). This

localization also supports a possible role for zmynd10 in

ciliogenesis or cilia function.

Mutations in DNAAF1, DNAAF2, DNAAF3, and LRRC6

cause PCD with ODA and IDA defects, and their encoded

proteins have previously been found to localize to the

cytoplasm of respiratory epithelial cells.20–23 Among

them, DNAAF1, DNAAF2, and DNAAF3 have been pro-

posed to be involved in the cytoplasmic preassembly of

dynein-arm complexes, which are later loaded to the

ciliary compartment by intraflagellar-transport (IFT) com-

plexes.21,22 Because we found that ZMYND10 mutations

caused ODA and IDA defects and because ZMYND10 local-

izes predominantly to the cytoplasm in the Human

Protein Atlas, we investigated whether ZYMND10 interacts

with these proteins. The interaction between ZMYND10

and DNAAF1, DNAAF2, or DNAAF3 was below the

threshold of detection (data not shown). Interestingly,

however, ZMYND10 bound to LRRC6 when it was overex-

pressed in human embryonic kidney 293T (HEK293T) cells

(Figure 1F). We also confirmed the interaction between

ZMYND10 and LRRC6 in human tracheal epithelial cells

(HTEpCs) (Figure S7). We further examined whether muta-

tions detected in individuals with PCD would disrupt the

interaction between ZMYND10 and LRRC6. The three

truncating protein alterations (p.Phe101Serfs*38,

p.Gln323*, and p.Gln366*)—which delete varying

C-terminal portions, including the MYND domain—abro-

gated the interaction between ZMYND10 and LRRC6,

whereas the three alterations resulting from missense

mutations did not (Figure 1F). By GST pull-down of rat

lung lysates, we confirmed the interaction between

LRRC6 and full-length ZMYND10 and showed that the

MYND domain alone was not sufficient for pull-down of

LRRC6 (Figure 1G). LRRC6 contains the four recognizable

domains: LRR (leucine-rich repeat), LRRCT (C-terminal to

LRR), CC (coiled-coil), and CS (CHORD-containing pro-

teins and SGT1) (Figure S8). We found that the purified

CS domain of LRRC6 alone was sufficient for interaction

with the full-length ZMYND10 but that the MYND

domain of ZMYND10 was not sufficient for interaction

with the CS domain of LRRC6 (Figure 1H). Thus, a C-termi-

nal fragment that extends beyond the MYND domain is

necessary for interaction between ZMYND10 and LRRC6

(see blue bar in Figure 1D).

Besides the recent reports about LRRC6,23,24 we

independently identified nine different homozygous

or compound-heterozygous LRRC6 mutations in

13 PCD-affected families: c.169_173delinsTCCCAAT

(pGly57Serfs*3), c.[259T>C];[436G>C] (p.[Cys87Arg];
abrogated interaction with LRRC6, whereas the three alterations resu
(G) GST pull-down of purified ZMYND10 (MYND domain and full-le
full-length ZMYND10, but not by the MYND domain alone.
(H) The purified CS domain of LRRC6 binds to the full-length ZMYN
MYND domain alone is not sufficient for the interaction with LRRC
SM denotes size marker.

The Amer
[Asp146His]), c.562C>T (pGln188*), c.630delG

(pTrp210Cysfs*12), c.598_599delAA (p.Lys200Glufs*3),

c.653þ1G>A, c.710_711delCA (p.Thr237Lysfs*7), and

c.891delA (pAla298Profs*2) (Table S2 and Figures S9 and

S10). By homozygosity mapping and WER in an inbred

Pakistani family (A4213) consisting of two siblings with

the clinical features of PCD and one sibling with situs

inversus (Table S2 and Figures S8A and S8B) (all individuals

exhibited defective ciliary ODA and IDA upon TEM), we

detected a homozygous frameshift mutation (c.630delG)

in LRRC6. We identified variant c.630delG homozygously

in five additional unrelated families of Pakistani descent

by the restriction-fragment-length-polymorphism (RFLP)

method with BsrG1, indicating that it represents a

Pakistani founder mutation (Tables S2 and S4). Similar to

ZMYND10 mutations, LRRC6 loss-of-function mutations

also caused the absence of the ODA and IDA components

DNAH5 (Figure S10) and DNALI1 (Figure S11) from ciliary

axonemes. These results are congruent with the previous

reports that showed that ODA components DNAI2 and

DNAI1 and IDA components DNALI1 and DNAH7 are

defective in airway epithelial cells from individuals with

LRRC6 mutations.23,24

We further examined whether variant proteins resulting

from LRRC6 mutations reciprocally abrogate the interac-

tion with ZMYND10 because we found that they interact

(Figure 1). When studying the interaction between wild-

type (WT) and mutant LRRC6 constructs and ZMYND10,

we found that the five truncating protein altera-

tions (p.Gln188*, p.Lys200Glufs*3, p.Trp210Cysfs*12,

p.Thr237Lysfs*7, and p.Ala298Profs*2) abrogated interac-

tion with ZMYND10 but that the two alterations resulting

from missense mutations did not (Figure 3A). By overex-

pression of progressive truncating constructs of LRRC6,

we showed that LRRC6’s N-terminal amino acid residues

1–204, which include the LRR, LRRCT, and CC domains,

were not necessary for the interaction with ZMYND10

(Figure 3B) but that the CS domain of LRRC6 alone was suf-

ficient for pull-down of ZMYND10 in rat lung lysates

(Figure 3C). We thus demonstrated that the C termini of

LRRC6 and ZMYND10 engaged in a protein-protein inter-

action, which was abrogated by truncating mutations de-

tected in individuals with PCD.

Because both genetic defects shared the features of ODA

and IDA defects demonstrated by TEM and IF, we hypothe-

sized that ZMYND10 and LRRC6 might be part of a shared

protein complex that is necessary for motile ciliary func-

tion. We therefore performed immunofluorescence studies

in rat trachea. We found that ZMYND10 (Figures 4A–4C)

localized to sites proximal to the axoneme (Figure 4A). It

also fully colocalized to cytoplasmic puncta of varying sizes
lting from missense mutations did not.
ngth). Note that LRRC6 in rat lung lysates was pulled down by the

D10, but not to the MYND domain of ZMYND10. Therefore, the
6.
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Table 1. Mutations of ZMYND10 in 14 Families Affected by PCD or Situs Inversus

Familya Individual(s)a
Ethnic
Origin

Nucleotide
Mutationb,c

(Segregation)

Deduced
Protein
Change

Exon
(Zygosity)

AA Sequence
Conservationd

PolyPhen-2/
MutationTaster

Parental
Consanguinity

IF (Axonemal IDA
or ODA Protein
Localization) TEM

Video
Microscopy

Other
(Clinical
Features)

A5014_067
(#111)

21 (#658) white c.47T>G
(�11: ND, �12: het)

p.Val16Gly 1 (hom) Mus musculuse 0.99/DC no ND ODA and
IDA defects

immotile
cilia

SI

A5014_252
(#355)

21 (#1347) white c.47T>G p.Val16Gly 1 (het) Mus musculuse 0.99/DC no ND ODA defects ND SS

c.300delC p.Phe101Serfs*38 3 (het) NA NA/DC

A5014_256
(#360)

21 (#1365) Hispanic c.85T>C p.Ser29Pro 1 (hom) Drosophilaf 0.99/pol yes ND ODA and
IDA defects

ND SI

DCP294 - French c.85T>C p.Ser29Pro 1 (hom) Drosophilaf 0.99/pol unknown ND ODA and
IDA defects

ND SI,
infertility

A5014_188
(#278)

21 (#1209) white c.300delC p.Phe101Serfs*38 3 (hom) NA NA/DC no ND ODA and
IDA defects

immotile
cilia

SS

OP-1366 II1 Turkish c.486dupA p.Ser163Ilefs*20 5 (hom) NA NA/DC yes DNAH5: defect
DNALI1: defect

- immotile
cilia

SS

OI-143 II1 and II2 Israeli c.dup608_
609dupTC

p.Thr205Alafs*3 7 (hom) NA NA/DC yes DNAH5: defect
DNALI1: defect

ODA and
IDA defects

ND SI

OP-1 - Turkish c.683G>A
(�11: het, �12: het)

p.Trp228* 7 (hom) NA NA/DC ND DNAH5: defect
DNALI1: defect

ODA and
IDA defects

ND -

OP-55 II1 Turkish homozygous
deletion, exons 7-12

NA 7–12 (hom) NA NA/DC yes DNAH5: defect
DNALI1: defect

ODA and
IDA defects

immotile
cilia

SS

A5014_274
(#383)

21 (#1420) Hispanic c.967C>T p.Gln323* 9 (hom) NA NA/DC no ND ODA and
IDA defects

ND SI

DCP261 - French c.967C>T p.Gln323* 9 (hom) NA NA/DC no ND ODA and
IDA defects

immotile
cilia

SI

DCP841 - Portuguese c.1038_1039delAG p.Gly347Glnfs*30 10 (hom) NA NA/DC no ND ODA and
IDA defects

immotile
cilia

SI

A5014_398
(#523)

21 (#1665) white c.1096C>T p.Gln366* 10 (hom) NA NA/DC no ND ODA and
IDA defects

immotile
cilia

SS

A4231
(#568)

21 (#1761)g Israeli c.1136A>G
(�11: het, �12: het)

p.Tyr379Cys 11 (hom) Drosophila 1.0/DC yes ND normalg ND SI and
congenital
athyroid
(no PCD)

Abbreviations are as follows: AA, amino acid; DC, disease causing; het, heterozygous; hom, homozygous; IDA, inner dynein arm; IF, immunofluorescence; NA, not applicable; ND, no data; ODA, outer dynein arm; pol,
polymorphism; SI, situs inversus; SS, situs solitus; and TEM, transmission electron microscopy.
aNumbers in parentheses are sample identifiers of the University of North Carolina.
bThe mutation in the index family is in bold. Recurrent mutations are underlined.
ccDNA mutations are numbered according to human cDNA reference sequence NM_015896.2 (ZMYND10); þ1 corresponds to the A of ATG start translation codon.
dAmino acid residue is continually conserved throughout evolution as indicated.
eVariant in dbSNP database (rs138815960), allele frequency EVS Server: CC ¼ 0/CA ¼ 7/AA ¼ 6491.
fExcept Xenopus has Asp.
gThis individual did not have a full PCD phenotype but had situs inversus only.
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Figure 2. Loss of ZMYND10 Function Causes Structural and Functional Defects of Motile Cilia in Human Lung and in a Zebrafish
Model of zmynd10 Knockdown
(A–D) Compared to those of a normal control (A), ciliary axonemes from individuals A5014_188 (B), OI-143II2 (C), and OP-55II1 (D),
who have PCD and ZYMYND10 mutations, lack IDAs and ODAs (arrows).
(E–G) Images of respiratory epithelial cells from a healthy control and from PCD-affected individuals who carry ZMYND10 loss-of-func-
tion mutations. Cells were costained with antibodies against acetylated a-tubulin (green) and DNAH5 (red). Nuclei were stained with
Hoechst 33342 (blue). In cells from a healthy control (E), DNAH5 localized to the axonemes of respiratory cilia. The yellow costaining
within the ciliary axoneme indicates that both proteins colocalized within respiratory cilia. In respiratory cells of individuals OI-143II2
(F) and OP-55II1 (G), DNAH5 was not detectable in the ciliary axonemes, suggesting that ZMYND10 loss-of-function mutations led to
defects in the ODA heavy-chain DNAH5. Rabbit polyclonal DNAH5 and DNALI1 antibodies were described previously.7 See also Figures
S3 and S4.
(H–M) zmynd10 knockdown in zebrafish replicated a ciliopathy phenotype. Compared to control-injected embryos (H), embryos
injected with zmynd10-translation-blocking MOs (I) showed three otoliths (arrowheads), cystic pronephric glomeruli (arrows), and
distended pronephric tubules (white bar).
(J) A still image of a high-speed microvideo of pronephric cilia (J) shows the tubule outline (dashed line) and position of pixels (black
line) sampled for the kymograph (J0; one second total duration). The double arrowhead denotes the approximate tubule lumen diameter.
(K) A still image of a high-speedmicrovideo of zmynd10-morphant pronephric cilia shows a distended tubule outline (dashed line), pixels
sampled for the kymograph (black line; K0, 1 s total duration), and a distended tubule lumen dimension (double-arrowhead line).
(L) A still image of a high-speed microvideo of control olfactory placode cilia and position of pixels sampled for the kymograph (black
line; L0, 1 s total duration). See also Movies S1, S2, S3, and S4.
(M) A still image of high-speed microvideo of zmynd10-morphant olfactory placode cilia and position of pixels sampled for the kymo-
graph (black line; M0, 1 s total duration). See also Movies S1, S2, S3, and S4.
Scale bars represent 5 mm in (J)–(M).
with SAS6 (spindle assembly abnormal protein 6)

(Figure 4B), which is required for centriole assembly during

ciliogenesis,25 and PCM1 (pericentriolar material 1)

(Figure 4C), which is a component of centriolar satellites.

Therefore, these results suggest that ZMYND10 localizes

to centriolar satellites. However, considering its varying

size, similar structures, described as ‘‘fibrous granules,’’
The Amer
have been shown to play a role in the biogenesis of motile

cilia.26,27 PCM1 is shown to localize to fibrous granules of

ciliogenic cells, but not to deuterosomes.28 Recently,

ZMYND10 has been shown to localize to puncta also in

the cytoplasm of human retinal pigment epithelial cells.29

When examining LRRC6 localization (Figures 4D–4G),

we found that LRRC6 colocalized with ZMYND10
ican Journal of Human Genetics 93, 336–345, August 8, 2013 341



Figure 3. Truncating Variants of LRRC6 Abrogate Interaction with ZMYND10
(A) For testing the effect of seven LRRC6 mutations detected in individuals with PCD, FLAG-tagged ZMYND10 and Myc-tagged LRRC6
constructs were transfected into HEK293T cells and coimmunoprecipitated with a FLAG antibody. Note that the five truncating protein
alterations (p.Gln188*p.Lys200Glufs*3, p.Tro210Cysfs*12, p.Thr237Lysfs*7, and p.Ala298Profs*2) abrogated interaction with
ZMYND10, whereas the two alterations resulting from missense mutations did not.
(B) LRRC6 residues 1–204, which include the LRR, LRRCT, and CC domains, were not necessary for the interaction with ZMYND10.
Coimmunoprecipitation was done as in Figure 3A.
(C) GST pull-down of purified LRRC6 (CS domain and full-length). Note that the CS domain of LRRC6 was sufficient for pull-down of
ZMYND10 in rat lung lysates.
‘‘SM’’ denotes size marker.
(Figure 4D) to the cytoplasmic puncta, but not to the

axonemal domain that is marked by acetylated tubulin

(Figure 4E). Like ZMYND10, LRRC6 fully colocalized to

cytoplasmic puncta with SAS6 (Figure 4F) and PCM1

(Figure 4G). We concluded that ZMYND10 and LRRC6

are in a shared protein complex with SAS6 and PCM1

and have localization of cytoplasmic punta in respiratory

epithelial cells, strongly suggesting a role of this protein

complex in motile cilia.

Because we found ZMYND10 and LRRC6 to be in a com-

plex and Horani et al. showed that LRRC6 is involved in

transcriptional regulation of DNAI1 and DNAH7,24 we

investigated whether ZMYND10 also regulates transcrip-

tion of some dynein proteins. We examined the expression

of DNAH5 and DNALI1 because we showed that DNAH5

(Figures 2 and Figure S3) and DNALI1 (Figure S4) were

not present in ZMYND10-mutant ciliary axonemes from

respiratory epithelia. In HTEpCs transfected with

ZMYND10-specific shRNA, the amount of DNAH5 and

DNALI1mRNAwas significantly lower than that in control

cells (Figure S12). These results suggest that the protein

complex including ZMYND10 and LRRC6 is involved in

transcriptional regulation of some dynein components.

It was shown that LRRC6 interacts with disheveled

(DVL)30 and that loss of lrrc6 function in the ciliopathy

zebrafish model seahorse increases canonical Wnt

signaling.31 We confirmed here by coimmunoprecipita-

tion that LRRC6 interacts with all three disheveled pro-

teins (DVL1, DVL2, and DVL3) (Figures S13A and S13B)

and found that the four proximal LRRC6 truncating alter-

ations (p.Gln188*, p.Lys200Glufs*3, p.Trp210Cysfs*12,
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and p.Thr237Lysfs*7) abrogated interaction with DVL3

but that the most distal truncating alteration (p.Ala298P-

rofs*2) and the two alterations resulting from missense

mutations did not, indicating that the LRRC6 fragment

distal of Ala298 is dispensable for interaction with DVL3.

Increased canonical Wnt signaling has been implicated

in ciliopathies of both sensory cilia32 and motile cilia, an

effect that is mediated by DVL. We therefore tested

whether overexpression of WT constructs of ZMYND10

and LRRC6 decreases canonical Wnt signaling by inhibit-

ing catenin-induced activation of a TCF-dependent re-

porter gene in the TOPFlash system. We found that

whereas all the truncated forms of LRRC6 failed to inhibit

TCF reporter activity, two defective proteins resulting from

missense mutations (c.259T>C [p.Cys87Arg] and

c.436G>C [p.Asp146His]) did not act any differently

than the WT. WT or truncated (p.Phe101Serfs*38,

p.Gln38*, and p.Gln366*) forms of ZMYND10 did not

have any effect on TCF reporter activity (Figure S13C).

Because of the divergent behavior of ZMYND10 and

LRRC6 mutations in this assay, an upregulation on canon-

ical Wnt signaling appears to be concomitant in LRRC6

mutations, but it does not appear to represent a shared

pathogenic pathway for the generation of the PCD

phenotype.

In summary, we identified ZMYND10 mutations as

causing PCD. ZMYND10 takes part in a protein complex

with LRRC6, localizes to cytoplasmic puncta in respiratory

epithelial cells, and regulates transcription of dynein pro-

teins, strongly suggesting that this protein complex plays

a role in motile cilia. Identification of genes involved in
, 2013



Figure 4. ZMYND10 and LRRC6 Colocalize with Centriolar Proteins in Rat Trachea
(A) Coimmunofluorescence of ZMYND10 (Sigma) with acetylated tubulin (Sigma).
(B–D) Coimmunofluorescence of ZMYND10 (Abnova) with SAS6 (spindle assembly abnormal protein 6) (Sigma) (B), PCM1
(pericentriolar material 1) (Cell Signaling Technology) (C), and LRRC6 (Novus) (D).

(legend continued on next page)
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the cytoplasmic, nonaxonemal components of motile cilia

will help in further elucidating the molecular mechanisms

involved in dynein-arm assembly, and it will be important

because PCD caused by mutations in these genes might be

particularly amenable to pharmacologic modification.
Supplemental Data

Supplemental Data include Supplemental Acknowledgments, 13
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