170 research outputs found

    Relación entre presentismo laboral y compromiso organizacional en los trabajadores de una empresa de tercerización laboral en el sector minero - Ayacucho, 2021

    Get PDF
    La presente investigación tuvo como objetivo determinar la relación entre el presentismo laboral y el compromiso organizacional en los trabajadores de una empresa de tercerización laboral en el sector minero- Ayacucho. Se trabajó bajo el paradigma cuantitativo, con un diseño no experimental transversal y de alcance correlacional. La población estuvo constituida por un total de 42 trabajadores de la empresa Consorcio MC & NA. Los instrumentos utilizados fueron la Escala de Presentismo SPS 6, el Cuestionario de Compromiso Organizacional de Allen y Meyer y una ficha socio demográfica. Para el análisis estadístico se utilizó el paquete estadístico SPSS versión 25 y las pruebas estadísticas Rho de Spearman y Chi-cuadrado. Los resultados mostraron que no existe correlación significativa del presentismo laboral y el compromiso organizacional (rs= .110; p= .487); asimismo, tampoco se encontró relación entre los datos sociodemográficos y las variables, salvo del presentismo laboral con el puesto de trabajo, siendo que el grupo de operarios quienes presentaban un número ligeramente mayor de caso moderados de presentismo (χ2=5.559; p = .018)

    A Phase I trial of talazoparib in patients with advanced hematologic malignancies

    Get PDF
    Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1-2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity.Clinical trial registration: NCT01399840 (ClinicalTrials.gov)

    Cyclo­linopeptide K butanol disolvate monohydrate

    Get PDF
    The title compound, C56H83N9O11S·2C4H10O·H2O, is a butanol–water solvate of the cyclo­linopeptide cyclo(Metsulfone1-Leu2–Ile3–Pro4–Pro5–Phe6–Phe7–Val8–Ile9) (henceforth referred to as CLP-K) which was isolated from flax oil. All the amino acid residues are in an l configuration based on the CORN rule. The cyclic nona­peptide exhibits eight trans peptide bonds and one cis peptide bond observed between the two proline residues. The conformation is stabilized by an α- and a β-turn, each containing an N—H⋯O hydrogen bond between the carbonyl group O atom of the first residue and the amide group H atom of the fourth (α-turn) and the third residue (β-turn), repectively. In the crystal, the components of the structure are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (001). The –C(H2)OH group of one of the butanol solvent mol­ecules is disordered over two sets of sites with refined occupancies of 0.863 (4) and 0.137 (4)

    A Phase I trial of talazoparib in patients with advanced hematologic malignancies

    Get PDF
    Aim: The objective of this study was to establish the maximum tolerated dose (MTD), safety, pharmacokinetics, and anti-leukemic activity of talazoparib. Patients & methods: This Phase I, two-cohort, dose-escalation trial evaluated talazoparib monotherapy in advanced hematologic malignancies (cohort 1: acute myeloid leukemia/myelodysplastic syndrome; cohort 2: chronic lymphocytic leukemia/mantle cell lymphoma). Results: Thirty-three (cohort 1: n = 25; cohort 2: n = 8) patients received talazoparib (0.1-2.0 mg once daily). The MTD was exceeded at 2.0 mg/day in cohort 1 and at 0.9 mg/day in cohort 2. Grade ≥3 adverse events were primarily hematologic. Eighteen (54.5%) patients reported stable disease. Conclusion: Talazoparib is relatively well tolerated in hematologic malignancies, with a similar MTD as in solid tumors, and shows preliminary anti leukemic activity.Clinical trial registration: NCT01399840 (ClinicalTrials.gov). Keywords: BRCA1/2 mutations; DNA damage response; hematologic malignancy; poly(ADP-ribose) polymerase inhibition; talazoparib

    Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells

    Get PDF
    Cdx2, a gene of the paraHox cluster, encodes a homeodomain transcription factor that plays numerous roles in embryonic development and in homeostasis of the adult intestine. Whereas Cdx2 exerts a tumor suppressor function in the gut, its abnormal ectopic expression in acute leukemia is associated to a pro-oncogenic function. To try to understand this duality, we have hypothesized that Cdx2 may interact with different protein partners in the two tissues and set up experiments to identify them by tandem affinity purification. We show here that Cdx2 interacts with the Ku heterodimer specifically in intestinal cells, but not in leukemia cells, via its homeodomain. Ku proteins do not affect Cdx2 transcriptional activity. However, Cdx2 inhibits in vivo and in vitro the DNA repair activity mediated by Ku proteins in intestinal cells. Whereas Cdx2 does not affect the recruitment of Ku proteins and DNA-PKcs into the DNA repair complex, it inhibits DNA-PKcs activity. Thus, we report here a new function of Cdx2, acting as an inhibitor of the DNA repair machinery, that may contribute to its tumor suppressor function specifically in the gut

    Non-homologous DNA end joining in normal and cancer cells and its dependence on break structures

    Get PDF
    DNA double-strand breaks (DSBs) are a serious threat to the cell, for if not or miss-repaired, they can lead to chromosomal aberration, mutation and cancer. DSBs in human cells are repaired via non-homologous DNA end joining (NHEJ) and homologous recombination repair pathways. In the former process, the structure of DNA termini plays an important role, as does the genetic constitution of the cells, through being different in normal and pathological cells. In order to investigate the dependence of NHEJ on DSB structure in normal and cancer cells, we used linearized plasmids with various, complementary or non-complementary, single-stranded or blunt DNA termini, as well as whole-cell extract isolated from normal human lymphocytes, chronic myeloid leukemia K562 cells and lung cancer A549 cells. We observed a pronounced variability in the efficacy of NHEJ reaction depending on the type of ends. Plasmids with complementary and blunt termini were more efficiently repaired than the substrate with 3' protruding single-strand ends. The hierarchy of the effectiveness of NHEJ was on average, from the most effective to the least, A549/ normal lymphocytes/ K562. Our results suggest that the genetic constitution of the cells together with the substrate terminal structure may contribute to the efficacy of the NHEJ reaction. This should be taken into account on considering its applicability in cancer chemo- or radiotherapy by pharmacologically modulating NHEJ cellular responses

    How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability

    Get PDF
    DNA double-strand breaks (DSBs) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that in normal cells DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilisation of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. We evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilisation of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We will consider the ways by which cancers modify and accost these processes to gain genomic instabilit

    Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. Methods In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Conclusion Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy
    corecore