23 research outputs found

    About levitation of superconducting rings for magnetic system of multipole plasma trap

    No full text
    In order to continue works on creation of the plasma trap with levitating magnetic coils the analytical function of the potential energy U(x,θ) of the system of two coaxial superconducting rings (and the upper ring is fixed at that), which trapped given fluxes of the same sign, in the homogeneous gravity field versus the coordinate x of the free ring and the deflection angle θ of its axis from the vertical has been obtained under approximation of thin rings. For manufactured HTSC rings, which trapped fluxes of the same sign, with the help of calculations of the dependence U(x,θ) in Mathcad system, such values of magnetic fluxes trapped by rings have been obtained under which equilibrium states of the free ring in the field of the fixed ring, stable to the shift of the levitating ring plane along the common axis and to the deflection of its axis from the vertical, exist. The existence of the determined by calculations equilibrium state for HTSC rings under trapped fluxes of the same sign, stable to the vertical shifts of the levitating ring and to the deflection of its axis from the vertical, has been proved experimentally.В продолжение работ по созданию плазменной ловушки с левитирующими магнитными катушками в приближении тонких колец получено аналитическое выражение для потенциальной энергии U (x,θ) системы из двух коаксиальных сверхпроводящих колец (причем, верхнее из них закреплено), захвативших заданные потоки одного знака, в однородном поле силы тяжести как функции координаты x свободного кольца и угла отклонения θ его оси от вертикали. Для изготовленных ВТСП-колец, захвативших потоки одного знака, с помощью расчетов в системе Mathcad зависимости U (x,θ) были найдены такие значения захваченных кольцами магнитных потоков, при которых существуют равновесные состояния свободного кольца в поле закрепленного кольца, устойчивые по отношению к смещению плоскости левитирующего кольца вдоль общей оси и к отклонению его оси от вертикали. Существование найденного из расчетов равновесного состояния для ВТСП- колец при захваченных потоках одного знака, устойчивого по отношению к вертикальным смещениям левитирующего кольца и к отклонению его оси от вертикали, было подтверждено экспериментально.У продовження робіт зі створення плазмової пастки з левітуючими магнітними котушками в наближенні тонких кілець отримано аналітичний вираз для потенційної енергії U (x, θ) системи з двох коаксіальних надпровідних кілець (причому, верхнє з них закріплено), що захопили задані потоки одного знаку, в однорідному полі сили тяжіння як функції координати x вільного кільця і кута відхилення θ його осі від вертикалі. Для виготовлених ВТНП-кілець, які захопили потоки одного знаку, за допомогою розрахунків в системі Mathcad залежності U (x, θ), були знайдені такі значення захоплених кільцями магнітних потоків, при яких існують рівноважні стани вільного кільця в полі закріпленого кільця, стійкі по відношенню до зміщення площини левітуючого кільця уздовж загальної осі та до відхилення його осі від вертикалі. Існування знайденого з розрахунків рівноважного стану для ВТНП-кілець при захоплених потоках одного знаку, стійкого по відношенню до вертикальних зсувів левітуючого кільця та до відхилення його осі від вертикалі, було підтверджено експериментально

    About stability of levitating states of superconducting myxini of plasma traps-Galateas

    No full text
    To develop a plasma trap with levitating superconducting magnetic coils it is necessary to carry out the search of their stable levitating states. With this purpose, based upon the superconductor property to conserve the trapped magnetic flux, in the uniform gravitational field the analytical dependence of the potential energy of one or two superconducting rings, having trapped the given magnetic fluxes, in the field of the fixed ring with the constant current from the coordinates of the free rings and the deflection angle of their axes from the common axis of the magnetic system has been obtained in the thin ring approximation. Under magnetic fluxes of the same polarity in coils the existence of the found from the calculations equilibrium levitating states for the manufactured HTSC rings stable relative to the vertical shifts of levitating rings and to the deflection angle of their axes from the vertical has been confirmed experimentally.Для разработки плазменной ловушки с левитирующими сверхпроводящими магнитными катушками нужно выполнить поиск их устойчивых левитирующих состояний. С этой целью, исходя из свойства сверхпроводников сохранять захваченный магнитный поток, в однородном поле силы тяжести в приближении тонких колец получена аналитическая зависимость потенциальной энергии одного либо двух сверхпроводящих колец, захвативших заданные магнитные потоки, в поле закрепленного кольца с постоянным током от координат свободных колец и углов отклонения их осей от общей оси системы. При совпадающих по знаку потоках в кольцах существование найденных из расчетов равновесных левитирующих состояний для изготовленных ВТСП колец, устойчивых по отношению к вертикальным смещениям левитирующих колец и к отклонению их осей от вертикали, было подтверждено экспериментально.Для розробки плазмової пастки з левітуючими надпровідними магнітними котушками потрібно виконати пошук їх стійких левітуючих станів. З цією метою, виходячи з властивості надпровідників зберігати захоплений магнітний потік, в однорідному полі сили тяжіння в наближенні тонких кілець отримана аналітична залежність потенційної енергії одного або двох надпровідних кілець, які захопили задані магнітні потоки, у полі закріпленого кільця з постійним струмом від координат вільних кілець і кутів відхилення їх осей від загальної осі системи. При співпадаючих за знаком потоках у кільцях існування знайдених з розрахунків рівноважних левітуючих станів для виготовлених ВТНП кілець, стійких по відношенню до вертикальних зміщень левітуючих кілець і до відхилення їх осей від вертикалі, було підтверджено експериментально

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance study of the CMS barrel resistive plate chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPIn October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date
    corecore