1,026 research outputs found

    H2 reformation in post-shock regions

    Full text link
    H2 formation is an important process in post-shock regions, since H2 is an active participant in the cooling and shielding of the environment. The onset of H2 formation therefore has a strong effect on the temperature and chemical evolution in the post shock regions. We recently developed a model for H2 formation on a graphite surface in warm conditions. The graphite surface acts as a model system for grains containing large areas of polycyclic aromatic hydrocarbon structures. Here this model is used to obtain a new description of the H2 formation rate as a function of gas temperature that can be implemented in molecular shock models. The H2 formation rate is substantially higher at high gas temperatures as compared to the original implementation of this rate in shock models, because of the introduction of H atoms which are chemically bonded to the grain (chemisorption). Since H2 plays such a key role in the cooling, the increased rate is found to have a substantial effect on the predicted line fluxes of an important coolant in dissociative shocks [O I] at 63.2 and 145.5 micron. With the new model a better agreement between model and observations is obtained. Since one of the goals of Herschel/PACS will be to observe these lines with higher spatial resolution and sensitivity than the former observations by ISO-LWS, this more accurate model is very timely to help with the interpretation of these future results.Comment: 12 pages, 3 figures, 1 table, accepted in MNRAS Letter

    A kinetic Monte Carlo study of desorption of H2 from graphite (0001)

    Full text link
    The formation of H2 in the interstellar medium proceeds on the surfaces of silicate or carbonaceous particles. To get a deeper insight of its formation on the latter substrate, this letter focuses on H2 desorption from graphite (0001) in Temperature-Programmed-Desorption Monte-Carlo simulations. The results are compared to experimental results which show two main peaks and an intermediate shoulder for high initial coverage. The simulation program includes barriers obtained by ab-initio methods and is further optimised to match two independent experimental observations. The simulations reproduce the two experimental observed desorption peaks. Additionally, a possible origin of the intermediate peak is given.Comment: 9 pages, 5 figures, Chem. Phys. Lett. in pres

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Observation of the Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay

    Get PDF
    The Bs0J/ψϕϕB_s^0 \rightarrow J/\psi \phi \phi decay is observed in pppp collision data corresponding to an integrated luminosity of 3 fb1^{-1} recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the Bs0B_s^0 meson is measured to be 5367.08±0.38±0.155367.08\,\pm \,0.38\,\pm\, 0.15 MeV/c2^2. The branching fraction ratio B(Bs0J/ψϕϕ)/B(Bs0J/ψϕ)\mathcal{B}(B_s^0 \rightarrow J/\psi \phi \phi)/\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant Bs0J/ψϕK+KB_s^0 \rightarrow J/\psi \phi K^+ K^- or Bs0J/ψK+KK+KB_s^0 \rightarrow J/\psi K^+ K^- K^+ K^- decays is found.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm

    Constraints on the unitarity triangle angle γ\gamma from Dalitz plot analysis of B0DK+πB^0 \to D K^+ \pi^- decays

    Get PDF
    The first study is presented of CP violation with an amplitude analysis of the Dalitz plot of B0DK+πB^0 \to D K^+ \pi^- decays, with DK+πD \to K^+ \pi^-, K+KK^+ K^- and π+π\pi^+ \pi^-. The analysis is based on a data sample corresponding to 3.0fb13.0\,{\rm fb}^{-1} of pppp collisions collected with the LHCb detector. No significant CP violation effect is seen, and constraints are placed on the angle γ\gamma of the unitarity triangle formed from elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated with the B0DK(892)0B^0 \to D K^*(892)^0 decay are determined for the first time. These measurements can be used to improve the sensitivity to γ\gamma of existing and future studies of the B0DK(892)0B^0 \to D K^*(892)^0 decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html; updated to correct figure 9 (numerical results unchanged

    Search for hidden-sector bosons in B0 ⁣K0μ+μB^0 \!\to K^{*0}\mu^+\mu^- decays

    Get PDF
    A search is presented for hidden-sector bosons, χ\chi, produced in the decay B0 ⁣K(892)0χ{B^0\!\to K^*(892)^0\chi}, with K(892)0 ⁣K+πK^*(892)^0\!\to K^{+}\pi^{-} and χ ⁣μ+μ\chi\!\to\mu^+\mu^-. The search is performed using pppp-collision data corresponding to 3.0 fb1^{-1} collected with the LHCb detector. No significant signal is observed in the accessible mass range 214m(χ)4350214 \leq m({\chi}) \leq 4350 MeV, and upper limits are placed on the branching fraction product B(B0 ⁣K(892)0χ)×B(χ ⁣μ+μ)\mathcal{B}(B^0\!\to K^*(892)^0\chi)\times\mathcal{B}(\chi\!\to\mu^+\mu^-) as a function of the mass and lifetime of the χ\chi boson. These limits are of the order of 10910^{-9} for χ\chi lifetimes less than 100 ps over most of the m(χ)m(\chi) range, and place the most stringent constraints to date on many theories that predict the existence of additional low-mass bosons.Comment: All figures and tables, along with supplementary material, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-036.htm

    Study of BDKπ+πB^{-}\to DK^-\pi^+\pi^- and BDππ+πB^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle γ\gamma

    Get PDF
    We report a study of the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the Kπ±K^{\mp}\pi^{\pm} and CP-even K+KK^+K^- and π+π\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed DK+πD\to K^+\pi^- final state of the BDππ+πB^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay BDKπ+πB^{-}\to DK^-\pi^+\pi^-, with DK+πD\to K^+\pi^-, is also presented. From the observed yields in the BDKπ+πB^-\to DK^-\pi^+\pi^-, BDππ+πB^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be γ=(7419+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of γ\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    A new algorithm for identifying the flavour of Bs0B_s^0 mesons at LHCb

    Get PDF
    A new algorithm for the determination of the initial flavour of Bs0B_s^0 mesons is presented. The algorithm is based on two neural networks and exploits the bb hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the Bs0B_s^0 meson. The second network combines the kaon charges to assign the Bs0B_s^0 flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb1^{-1} collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the Bs0B_s^0-Bˉs0\bar{B}_s^0 flavour oscillations in Bs0Dsπ+B_s^0 \to D_s^- \pi^+ decays, and by analysing flavour-specific Bs2(5840)0B+KB_{s 2}^{*}(5840)^0 \to B^+ K^- decays. The tagging power measured in Bs0Dsπ+B_s^0 \to D_s^- \pi^+ decays is found to be (1.80±0.19(stat)±0.18(syst))(1.80 \pm 0.19({\rm stat}) \pm 0.18({\rm syst}))\%, which is an improvement of about 50\% compared to a similar algorithm previously used in the LHCb experiment.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm
    corecore