201 research outputs found

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    Simulation study for the future IceCube-Gen2 surface array

    Get PDF

    The Surface Array planned for IceCube-Gen2

    Get PDF
    IceCube-Gen2, the extension of the IceCube Neutrino Observatory, will feature three main components: an optical array in the deep ice, a large-scale radio array in the shallow ice and firn, and a surface detector above the optical array. Thus, IceCube-Gen2 will not only be an excellent detector for PeV neutrinos, but also constitutes a unique setup for the measurement of cosmic-ray air showers, where the electromagnetic component and low-energy muons are measured at the surface and high-energy muons are measured in the ice. As for ongoing enhancement of IceCube’s current surface array, IceTop, we foresee a combination of elevated scintillation and radio detectors for the Gen2 surface array, aiming at high measurement accuracy for air showers. The science goals are manifold: The in-situ measurement of the cosmic-ray flux and mass composition, as well as more thorough tests of hadronic interaction models, will improve the understanding of muons and atmospheric neutrinos detected in the ice, in particular, regarding prompt muons. Moreover, the surface array provides a cosmic-ray veto for the in-ice detector and contributes to the calibration of the optical and radio arrays. Last but not least, the surface array will make major contributions to cosmic-ray science in the energy range of the transition from Galactic to extragalactic sources. The increased sensitivities for photons and for cosmic-ray anisotropies at multi-PeV energies provide a chance to solve the puzzle of the origin of the most energetic Galactic cosmic rays and will serve IceCube’s multimessenger mission

    Search for excited leptons in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the final published paper that is available from the link belowResults are presented of a search for compositeness in electrons and muons using a data sample of pp collisions at a center-of-mass energy √s=7 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 5.0 fb−15.0 fb−1. Excited leptons (ℓ⁎) are assumed to be produced via contact interactions in conjunction with a standard model lepton and to decay via ℓ⁎→ℓγ, yielding a final state with two energetic leptons and a photon. The number of events observed in data is consistent with that expected from the standard model. The 95% confidence upper limits for the cross section for the production and decay of excited electrons (muons), with masses ranging from 0.6 to 2 TeV, are 1.48 to 1.24 fb (1.31 to 1.11 fb). Excited leptons with masses below 1.9 TeV are excluded for the case where the contact interaction scale equals the excited lepton mass. The limits on the cross sections are the most stringent ones published to date

    stairs and fire

    Get PDF
    corecore