50 research outputs found

    Nucleosomes effectively shield DNA from radiation damage in living cells

    Get PDF
    Abstract Eukaryotic DNA is organized in nucleosomes, which package DNA and regulate its accessibility to transcription, replication, recombination and repair. Here, we show that in living cells nucleosomes protect DNA from high-energy radiation and reactive oxygen species. We combined sequence-based methods (ATAC-seq and BLISS) to determine the position of both nucleosomes and double strand breaks (DSBs) in the genome of nucleosome-rich malignant mesothelioma cells, and of the same cells partially depleted of nucleosomes. The results were replicated in the human MCF-7 breast carcinoma cell line. We found that, for each genomic sequence, the probability of DSB formation is directly proportional to the fraction of time it is nucleosome-free; DSBs accumulate distal from the nucleosome dyad axis. Nucleosome free regions and promoters of actively transcribed genes are more sensitive to DSB formation, and consequently to mutation. We argue that this may be true for a variety of chemical and physical DNA damaging agents

    High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2

    The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance

    Get PDF
    Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development. \uc2\ua9 The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research

    The BioMart community portal: an innovative alternative to large, centralized data repositories.

    Get PDF
    The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations

    Letter, Albacete, Spain, to Victoriano Manteiga

    No full text
    Last page of letter in Spanish that was probably written to Victoriano Manteiga, the editor of the Tampa newspaper La Gaceta. This page is the only one extant. The text reads: ... I am bound to the cause of the Democratic Spanish Republic and only Spain can give me orders. I live to serve her, and I am happy serving her and knowing that as long as the Republic needs me, I\u27ll be at her service until death, now and forever. Handwritten on stationery with letterhead Comisariado General de Guerra, Ministerio de Defensa Nacional, Casa del Ejercito Popular.https://digitalcommons.usf.edu/span_civil_war/1036/thumbnail.jp

    Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    No full text
    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation

    Production of Hâ‚‚Oâ‚‚ in the endoplasmic reticulum promotes in vivo disulfide bond formation.

    No full text
    AIMS Oxidative protein folding in the luminal compartment of endoplasmic reticulum (ER) is thought to be accompanied by the generation of Hâ‚‚Oâ‚‚, as side-product of disulfide bond formation. We aimed to examine the role of Hâ‚‚Oâ‚‚ produced in the lumen, which on one hand can lead to redox imbalance and hence can contribute to ER stress caused by overproduction of secretory proteins; on the other hand, as an excellent electron acceptor, Hâ‚‚Oâ‚‚ might serve as an additional pro-oxidant in physiological oxidative folding. RESULTS Stimulation of Hâ‚‚Oâ‚‚ production in the hepatic ER resulted in a decrease in microsomal GSH and protein-thiol contents and in a redox shift of certain luminal oxidoreductases in mice. The oxidative effect, accompanied by moderate signs of ER stress and reversible dilation of ER cisternae, was prevented by concomitant reducing treatment. The imbalance also affected the redox state of pyridine nucleotides in the ER. Antibody producing cells artificially engineered with powerful luminal Hâ‚‚Oâ‚‚ eliminating system showed diminished secretion of mature antibody polymers, while incomplete antibody monomers/dimers were accumulated and/or secreted. INNOVATION Evidence are provided by using in vivo models that hydrogen peroxide can promote disulfide bond formation in the ER. CONCLUSION The results indicate that local Hâ‚‚Oâ‚‚ production promotes, while quenching of Hâ‚‚Oâ‚‚ impairs disulfide formation. The contribution of Hâ‚‚Oâ‚‚ to disulfide bond formation previously observed in vitro can be also shown in cellular and in vivo systems
    corecore