3,615 research outputs found

    Sawtooth Profile in Smectic a Liquid Crystals

    Get PDF
    We study the de Gennes free energy for smectic A liquid crystals over S2-valued vector fields to understand the chevron (zigzag) pattern formed in the presence of an applied magnetic field. We identify a small dimensionless parameter a, and investigate the behaviors of the minimizers when the field strength is of order O (ε-1). In this regime, we show via Γ-convergence that a chevron structure where the director connects two minimum states of the sphere is favored. We also analyze the Chen-Lubensky free energy, which includes the second order gradient of the smectic order parameter, and obtain the same general behavior as for the de Gennes case. Numerical simulations illustrating the chevron structures for both energies are included. © 2016, Society for Industrial and Applied Mathematic

    Single-cell analysis of early antiviral gene expression reveals a determinant of stochastic IFNB1 expression

    Get PDF
    RIG-I-like receptors (RLRs) are cytoplasmic sensors of viral RNA that trigger the signaling cascade that leads to type I interferon (IFN) production. Transcriptional induction of RLRs by IFN is believed to play the role of positive feedback to further amplify viral sensing. We found that RLRs and several other IFN-stimulated genes (ISGs) are induced early in viral infection independent of IFN. Expression of these early ISGs requires IRF3/IRF7 and is highly correlated amongst them. Simultaneous detection of mRNA of IFNB1, viral replicase, and ISGs revealed distinct populations of IFNB1 expressing and non-expressing cells which are highly correlated with the levels of early ISGs but are uncorrelated with IFN-dependent ISGs and viral gene expression. Individual expression of RLRs made IFNB1 expression more robust and earlier, suggesting a causal relation between levels of RLR and induction of IFN.112Ysciescopu

    Statistical design of personalized medicine interventions: The Clarification of Optimal Anticoagulation through Genetics (COAG) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is currently much interest in pharmacogenetics: determining variation in genes that regulate drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such variation motivates the application of personalized drug therapies that utilize a patient's genetic makeup to determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy improves patient care, a personalized medicine intervention may be evaluated within the framework of a randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special considerations: the distribution of relevant allelic variants in the study population; and whether the pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.</p> <p>Methods</p> <p>The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves as an illustrative example of a personalized medicine intervention that uses each subject's genotype information. The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using clinical information and genotypes for polymorphisms in <it>CYP2C9 </it>and <it>VKORC1</it>; and clinical-guided dosing, the initiation of warfarin therapy based on algorithms using only clinical information.</p> <p>Results</p> <p>We determine an absolute minimum detectable difference of 5.49% based on an assumed 60% population prevalence of zero or multiple genetic variants in either <it>CYP2C9 </it>or <it>VKORC1 </it>and an assumed 15% relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that reasonable departures from these assumptions may decrease statistical power to 65%.</p> <p>Conclusions</p> <p>In a personalized medicine intervention, the minimum detectable difference used in sample size calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions, we recommend that they be monitored during the conduct of a personalized medicine intervention.</p> <p>Trial Registration</p> <p>clinicaltrials.gov: NCT00839657</p

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure

    Azimuthal Angle Correlations for Rapidity Separated Hadron Pairs in d+Au Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.Comment: 330 authors, 6 pages text, 4 figures, no tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Precision Top-Quark Mass Measurements at CDF

    Get PDF
    We present a precision measurement of the top-quark mass using the full sample of Tevatron s=1.96\sqrt{s}=1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb1fb^{-1}. Using a sample of ttˉt\bar{t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the WW boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {\it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, \mtop = 172.85 \pm0.71(stat) 0.71 (stat) \pm0.85(syst)GeV/c2. 0.85 (syst) GeV/c^{2}.Comment: submitted to Phys. Rev. Let

    Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

    Get PDF
    The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example in supersymmetry. The results are interpreted as upper limits in the parameter space of the minimal supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure
    corecore