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SAWTOOTH PROFILE IN SMECTIC A LIQUID CRYSTALS∗

CARLOS J. GARCÍA-CERVERA† , TIZIANA GIORGI‡ , AND SOOKYUNG JOO§

Abstract. We study the de Gennes free energy for smectic A liquid crystals over S
2-valued

vector fields to understand the chevron (zigzag) pattern formed in the presence of an applied magnetic
field. We identify a small dimensionless parameter ε, and investigate the behaviors of the minimizers
when the field strength is of order O(ε−1). In this regime, we show via Γ-convergence that a
chevron structure where the director connects two minimum states of the sphere is favored. We also
analyze the Chen–Lubensky free energy, which includes the second order gradient of the smectic order
parameter, and obtain the same general behavior as for the de Gennes case. Numerical simulations
illustrating the chevron structures for both energies are included.

Key words. liquid crystals, sawtooth profile, Γ-convergence

AMS subject classifications. 82D30, 35Q56, 65Z05

DOI. 10.1137/15M1015480

1. Introduction. The rodlike molecules of a liquid crystal in the smectic A
phase tend to align with each other, and arrange themselves into equally spaced
layers, perpendicular to the principal molecular axis. If the liquid crystal sample
is confined between two flat plates, and its molecules are uniformly aligned so that
the smectic layers are parallel to the bounding plates, a magnetic field applied in
the direction parallel to the layer will tend to reorient the molecules and the layers,
while the surface anchoring condition at the plates will oppose this reorientation.
Hence, an instability will occur above a threshold magnetic field, called the Helfrich–
Hurault effect [16, 17], where layer undulation will appear. As the applied field
increases well above this first critical value, the sinusoidal shape of the smectic layer
will change into a chevron (zigzag) pattern with a longer period. The Helfrich–
Hurault effect has been analyzed by Garćıa-Cervera and Joo in [13, 14], where the
periodic oscillations of the smectic layers and molecular alignments were described at
the onset of the undulation, and the critical magnetic field was estimated in terms
of the material constants and sample thickness. In this paper, we are interested in
the higher field regimes, in particular in the description and derivation of the chevron
profile.

Experimental studies of the development of the chevron pattern from the sinu-
soidal shape of undulation were presented by Ishikawa and Lavrentovich [18] and
Senyuk, Smalyukh, and Lavrentovich [28]. They also proposed a model with weak
anchoring conditions for sinusoidal and sawtooth undulation profiles. By equating the
director and layer normal, making an ansatz of periodic undulations, and assuming the
square lattice for undulations, they reduced the problem to one dimension, obtained
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218 C. J. GARCÍA-CERVERA, T. GIORGI, AND S. JOO

an ordinary differential equation, and found the explicit solution to the equation. To
rigorously study the zigzag pattern in full generality, we analyze via Γ-convergence a
two-dimensional de Gennes energy functional, without identifying the director with
the layer normal.

The de Gennes free energy density includes nematic, smectic A, and magnetostatic
contributions. Nondimensionalization leads to the identification of a small parameter
ε. In [13], the authors show that the critical field of the undulation phenomenon is
of order O(1). More precisely, they obtain estimates of π and 1, with and without
the assumption that the layers are fixed at the bounding plates, respectively. In this
work, we consider regimes where the field strength is of order O(ε−1).

The mathematical analysis we adopt for the two-dimensional de Gennes free en-
ergy is motivated by the study of domain walls in ferromagnetism. By reformulating
the free energy, we capture a double well potential having two minimum states for the
director on the sphere, hence we follow [2] and use a Modica–Mortola-type inequality
on the sphere equipped with a new metric associated with the double well potential.
Additionally, since experiments show periodic chevron patterns, we consider periodic
boundary conditions, and adapt to our problem for S2-valued vector fields, the vari-
ational approach on the flat torus presented in [7], where the authors consider the
Cahn–Hilliard energy in the periodic setting in order to study microphase separation
of diblock copolymers. It’s important to notice that while extending the techniques in
[2] to the flat torus, we need to consider the presence of the smectic order parameter,
and work with an explicit form of a geodesic curve connecting the two minima in the
new metric.

We also consider the model proposed by Chen and Lubensky in 1976 [5], which
includes a second order gradient term for the smectic order parameter. In the physics
literature, this is considered as a general extension of the de Gennes model. Introduced
in [5] to investigate the nematic to smectic A or smectic C phase transition, it was later
used to predict the twist grain boundary phase in chiral smectic liquid crystals; see
[27]. Our aim is to study the role of the coefficient of the second order gradient term in
the chevron formation. Since, it is well known that this model lacks coercivity of the
energy, in here we employ its modification as presented in [21, 20]. The Γ-convergence
analysis for the two-dimensional de Gennes energy in the flat torus setting applies in a
straightforward manner to the two-dimensional Chen–Lubensky energy, and indicates
that the Γ-limit for Chen–Lubensky provides a lower energy than the Γ-limit for the
de Gennes energy; see Remark 3.1. Our study in two dimensions suggests that the
chevron structure is essentially one dimensional, hence to capture the fundamental
features of the vertical stripes, we derive also a Γ-convergence result for the one-
dimensional Chen–Lubensky energy on the interval with periodic boundary condition,
not on S

1. From this approach, which we believe is also of mathematical interest, as
in this setting an additional boundary integral term is present in the Γ-limit, we
gather a precise structure of the limiting one-dimensional minimizers: due to the
mass constraint and the periodic boundary conditions, Theorem 3.1 tells us that they
will have two internal jumps.

Numerical simulations in three dimensions are carried out to illustrate the saw-
tooth profiles of undulations by solving the gradient flow equations. The molecular
alignment and layer structure at the cross section of the body confirm our mathemati-
cal analysis. The numerics also show that the evolution from the sinusoidal perturba-
tion at the onset of undulations to the chevron pattern occurs with an increase of the
wavelength. Numerical methods developed in [14] for the Chen–Lubensky functional
are employed for our problem.
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Our mathematical results and numerical experiments are consistent with the ex-
perimental picture presented by Ishikawa and Lavrentovich in [18] and Senyuk, Sma-
lyukh, and Lavrentovich [28].

Chevron formation is also observed in a surface-stabilized liquid crystal cell cooled
from the smectic A to the smectic C phase; an interesting analytic variational char-
acterization of this phenomenon can be found in [6].

The paper is organized as follows. In section 2, we first introduce the de Gennes
model and the scaling regime of our problem, then we obtain the Γ-convergence result
in two dimensions for the flat torus. In section 3, we prove the results for the Chen–
Lubensky model. Numerical simulations for the de Gennes and Chen–Lubensky mod-
els are presented in section 4. Detailed analyses of the geodesics used in the Γ-limit
analysis, and of the double well profile for the Chen–Lubensky energy are provided
in Appendix 5.1.

2. The de Gennes model. We consider the complex de Gennes free energy
to study the chevron structure of smectic A liquid crystals due to the presence of a
magnetic field. The smectic state is described by a unit vector n and a complex order
parameter ψ. The unit vector field n, or director field, represents the average direction
of molecular alignment. The smectic order parameter is written as ψ(x) = ρ(x)eiqω(x),
where ω parametrizes the layer structure so that ∇ω is perpendicular to the layer.
The smectic layer density ρ measures the mass density of the layers.

According to the de Gennes model, the free energy is given by

(2.1)

∫
Ω

(
C|∇ψ − iqnψ|2 +K|∇n|2 + b

2

(
|ψ|2 − r

b

)2
− χaH

2(n · h)2
)
dx,

where the material parameters C,K, b, and temperature dependent parameter r =
TNA − T are fixed positive constants. The last term in (2.1) is the magnetic free
energy density, h is a unit vector representing the direction of the magnetic field, and
H2 is the strength of the applied field. In contrast to the situation where an electric
field is applied, considering a constant magnetic field is typical of many studies, since
in equilibrium, the magnetic field is not much affected by the presence of the liquid
crystal, which leads to the standard assumption that magnetic induction is parallel to
the magnetic field in the Maxwell equations [29]. We consider a rectangular sample,
Ω = (−L,L)2×(−d, d), and since we expect from our numerics that the smectic order
density ρ2 will be smaller than r/b around the chevron tip, but still away from 0
when the layer form a well-defined chevron pattern, we take ρ2 = r

b , and perform the
change of variables x̄ = x/d. We obtain the following nondimensionalized energy

(2.2) G(ϕ,n) = dK

ε

∫
Ω̃

(
1

ε
|∇ϕ− n|2 + ε|∇n|2 − τ(n · h)2

)
dx̄,

where ϕ = ω
d , ε = λ

d , λ =
√

K
Cq2 , τ = χaH

2d2ε
K , and Ω̃ = (−l, l)2 × (−1, 1), l = L

d .

The dimensionless parameter ε is in fact the ratio of the layer thickness to the sample
thickness and thus ε � 1. The values d = 1 mm and λ = 20 Å are employed in
[9]. This small parameter ε is also used in [13], where the authors investigate the
first instability of G, and find the critical field, τc, at which undulations appear to be
τc = O(1). In this paper we are interested in the layer and director configurations for
τ = O(ε−1). Therefore, we set σ = τε and treat σ as a constant.

We study the layer structure in the cross section of the sample (z = 0), so that the
problem is reduced to a two-dimensional case. Thus, we assume that n = (n1, n2, n3),
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where n = n(x, y), and the magnetic field is applied in the x-direction, h = e1. We
rewrite the magnetic energy density as −σ

εn
2
1 = −σ

ε + σ
ε (n

2
2 + n2

3), and set ϕ = z −
g(x, y) with g being the layer displacement from the flat position. Up to multiplicative
and additive constants, and dropping the bar notation, the energy can then be written
as ∫

Ω

[
ε|∇n|2 + 1

ε
W (n) +

1

ε
(gx + n1)

2 +
1

ε
(gy + n2)

2

]
dx dy,

where Ω = (−l, l)2, and

W (n) = σn2
2 +

1

A
(n3 −A)2

with A = (1 + σ)−1 < 1. We denote the zeros of W : S2 → [0,∞) by

n± = (±n̄1, 0, A),

where n̄1 =
√
1−A2, and write α = arccos(A).

To incorporate the periodic boundary conditions in our mathematical framework,
we consider a two-dimensional flat torus T2 = R

2/(2lZ)2, that is, the square [−l, l)2
with periodic boundary conditions. More detailed definitions on the Sobolev space,
BV (bounded variation) spaces, and finite perimeters on T

2 can be found in [7].
In conclusion, we work with the energy functional

(2.3) Fε(n, g) =

∫
T2

[
ε|∇n|2 + 1

ε
W (n) +

1

ε
(gx + n1)

2 +
1

ε
(gy + n2)

2

]
dx dy.

We analyze the configuration of the minimizers of Fε using Γ-convergence [8, 4]. In
particular, we use the following characterization of the Γ-limit [8]. Let (X, T ) be a
topological space, and Gh be a family of functionals parametrized by h. A functional
G0 is the Γ-limit of Gh as h→ 0 in T iff the two following conditions are satisfied:

(i) If uh → u0 in T , then lim infh→0Gh(uh) ≥ G0(u0).
(ii) For all u0 ∈ X , there exists a sequence uh ∈ X such that uh → u0 in T , and

limh→0Gh(uh) = G0(u0).
Condition (i) is related to lower semicontinuity, while to verify condition (ii) a specific
construction for the converging sequence is typically required.

In our setup, we will use the sets

Y = W1,2(T2, S2)×W 1,2(T2),

A =

{
(n, g) ∈ BV(T2, {n±})×W 1,2(T2) : gx ∈ BV (T2, {±n̄1}),

g = g(x), n = n(x), gx + n1 = 0 a.e., n2 = 0 a.e.,

∫
T2

n1 = 0

}
,

and the following functionals, Gε and G0, defined on X = L1(T2, S2)× L2(T2):
(2.4)

Gε(n, g) :=

{
Fε(n, g) if (n, g) ∈ Y,
+∞ else,

G0(n, g) :=

{
2c0PT2(An−) if (n, g) ∈ A,
+∞ else.

In the above, PT2(An−) is the perimeter, defined as in [15, 7], of the set

(2.5) An− = {(x, y) ∈ T
2 : n(x) = n−},
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while

c0 = inf

{∫ 1

0

√
W (γ(t))|γ′(t)|dt : γ ∈ C1([0, 1], S2), γ(0) = n−, γ(1) = n+

}
.

The value of c0, as mentioned in [24], is given by

(2.6) c0 = c0(A) =
2√
A
(sinα− α cosα).

For the convenience of the reader a sketch of a proof of (2.6) is provided in Ap-
pendix 5.1 at the end of this paper.

A Γ-convergence result is always paired with a compactness property, to ensure
that every cluster point of a sequence of minimizers for Gε is a minimizer of G0.

Proposition 2.1 (compactness). Let the sequences {εj}j↑∞ ⊂ (0,∞) and
{(nj , gj)}j↑∞ ⊂ Y be such that

εj → 0 and {Gεj (nj , gj)}j↑∞ is bounded.

Then, there exist a subsequence {(njk , gjk)} and (n, g) ∈ A such that

njk → n in L1(T2, S2) and gjk − 1

4l2

∫
Ω

gjkdxdy → g in L2(T2).

Proof. The uniform bound Gεj (θj , gj) ≤M and (nj , gj) ∈ Y give

(2.7) nj,2 → 0 and nj,3 → A in L2(T2),

which lead to |nj,1| → n̄1 in L1(T2), where n̄1 =
√
1−A2. We define, for ξ, η ∈ S

2,

d(ξ, η) = inf

{∫ 1

0

√
W (γ(t)) |γ′(t)| dt; for γ ∈ C1([0, 1]),

γ(t) ∈ S
2 such that γ(0) = ξ, γ(1) = η

}
(2.8)

and Φ(ξ) = d(n−, ξ). Note that in this notation we have c0 = d(n−,n+) = Φ(n+).
Known results imply that the function d(ξ, η) is a distance on S

2 associated with
the degenerate Riemann metric defined by

√
W , and Φ is Lipschitz continuous with

respect to the Euclidean distance; see [2].
We define wj = Φ(nj), and apply the classical Modica–Mortola argument to

derive

lim inf
j→∞

Gεj (nj , gj) ≥ 2 lim inf
j→∞

∫
T2

√
W (nj)|∇nj |

≥ 2 lim inf
j→∞

∫
T2

|D(Φ(nj))| ≡ 2 lim inf
j→∞

∫
T2

|Dwj |,(2.9)

where the second inequality of (2.9) is a consequence of Lemma 4.2 in [2]. From this
we have that the wj are uniformly bounded in W 1,1(T2), and therefore there exists
w0 ∈ BV (T2) such that (up to subsequences) wj → w0 in L1(T2) and a.e. in T

2. If we
define n = n−χS + n+χT2\S , where S = {x ∈ T

2 : w0(x) = 0}, following [22, 23] and
Proposition 4.1 in [3], we can then show that there is a subsequence {njk} such that
njk → n inL1(T2, S2) andn ∈ BV (T2,n±). We next look at the layer displacement g.
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The bound on the energy gives

(2.10)

∫
T2

[
((gj)x + (nj)1)

2 + ((gj)y + (nj)2)
2
]
≤Mε,

that is ‖∇gj‖2 ≤ C, hence we can find a subsequence {gjk} and a g for which

gjk − 1

4l2

∫
Ω

gjkdx dy → g weakly in H1(T2) and strongly in L2(T2).

Additionally, from (2.7) and (2.10), we have g(x, y) = g(x) a.e., and since∫
T2

(gx + n1)
2 ≤ lim inf

j→∞

∫
T2

((gj)x + (nj)1)
2 = 0,

we obtain n1(x, y) = −g′(x) a.e. in T
2, and

∫
T2 n1 = −

∫
T2 gx = 0, by the periodicity

of g. This implies n(x, y) = n(x) a.e., hence (n, g) ∈ A.
The proof of the following lower bound inequality follows directly from the proof

of (step 1) of Theorem 2.4 in [2].
Lemma 2.2 (lower semicontinuity). For every (n, g) ∈ L1(T2, S2)× L2(T2), and

every sequence (nj , gj) ∈ Y such that (nj , gj) converges to (n, g) in L1(T2)×L2(T2),
there holds

lim inf
j→∞

Gεj (nj , gj) ≥ G0(n, g),

and (n, g) ∈ A.
Lemma 2.3 (construction). For any (n, g) ∈ A, there exists a sequence (nj , gj) ∈

Y converging in L1(T2, S2)× L2(T2) as j → ∞ to (n, g), and such that

lim sup
j→∞

Gεj (nj , gj) = G0(n, g).

Proof. The construction of a recovering sequence combines ideas from [22, 23],
and the proofs of (step 2) of Theorem 2.4 in [2], and condition (2.9) in [3].

As in [2], given (n, g) ∈ A, for (x, y) ∈ T
2 we define

ρ(x, y) =
{ − dist((x, y), ∂An−) if (x, y) ∈ An− ,

dist((x, y), ∂An−) if (x, y) /∈ An− .

Note that because n is a function only of x, we have ρ(x, y1) = ρ(x, y2) for any
(x, y1), (x, y2) ∈ T

2, that is ρ(x, y) = ρ(x).
Keeping in mind Lemma 5.2 in subsection 5.1, we pick

γC(t) = (sin(2αt− α), 0, cos(2αt− α))

to construct ψj : [0, 1] → R as ψj(t) =
∫ t

0
2αεj√

εj+W (γC(s))
ds. If ηj = ψj(1), we have

0 < ηj < 2 ε
1/2
j α, and denoting by ζ̂j : [0, ηj ] → [0, 1] the inverse function of ψj , we

set

ζj(t) =

{ 0 if t < 0,

ζ̂j(t) if 0 ≤ t ≤ ηj ,
1 if t > ηj .

We next consider χ(t) =
{

n− if t<0

n+ if t>0
, and write n(x) = χ(ρ(x)). This is significant,

because for every t it holds (γC(ζj(t))
)
1
≤
(
χ(t))1 and (χ(t))1 ≤ (γC(ζj(t + ηj)))1,
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thus there exists a δj ∈ [0, ηj] for which∫
T2

(
γC(ζj(ρ(x) + δj))

)
1
=

∫
T2

(
χ(ρ(x))

)
1
=

∫
T2

n1 = 0.

We then define, for (x, y) ∈ T
2, nj(x, y) = γC(ζj(ρ(x) + δj)), since with this choice we

have nj(x, y) = nj(x) and
∫
T2(nj)1 = 0. By setting gj(x) =

∫ x

−l
(n̂j)1(x) dx, and using

the fact that by definition of γC the y-component of nj is identically equal to zero,
we can argue as in [2, 3] to conclude that the sequence (nj , gj) verifies the required
conditions.

The following theorem is a consequence of the previous Γ-convergence result, and
the uniqueness of the pattern of the minimizers of G0. A similar interface limit for a
periodic system is studied in [7], in here we apply their method of proof.

Theorem 2.4. Let {(nε, gε)} ∈ Y be a sequence of minimizers of Gε. Then there
exists a sequence {cε} ⊂ (−l, l) such that

(ñε, g̃ε) → (n, g) in L1(T2, S2)× L2(T2),

where ñε(x, y) = nε(x + cε, y), g̃ε(x, y) = gε(x + cε, y), n = n−χL− + n+χL+ ,
gx = −n̄1χL−+n̄1χL+ , L− = {x : l

2 < |x| < l}, and L+ = {x : |x| < l
2}. Furthermore,

G0(n, g) = 8c0l with c0 as in (2.6).
Proof. Lemmas 2.2 and 2.3 result in G0 = Γ− limε→0Gε. Also, it is clear that the

minimizers of G0 are vertical strips with two parallel one-dimensional tori, due to the
condition

∫
T2 n1 = 0. In fact, these are the minimizers of the periodic isoperimetric

problem studied in [7]. We argue by contradiction. Suppose there is δ > 0 and a
sequence εj → 0 such that

(2.11) inf
a∈T1

‖(nεj (·+ a, ·), gεj (·+ a, ·))− (n, g)‖L1(T2,S2)×L2(T2) ≥ δ.

Since (nεj , gεj ) is a sequence of minimizers of Gε, from Proposition 2.1 there is a
further subsequence {(nεj , gεj )}, not relabeled, and a minimizer (m, h) ∈ A of G0

such that (nεj , gεj ) → (m, h) in L1(T2, S2)×L2(T2). By the uniqueness of the pattern
of the interface limit, m has two phases separated by two vertical line segments, i.e.,
m(x, y) = n(x+ b, y) for some b ∈ T

1, which is in contradiction to (2.11).

3. Chen–Lubensky energy. In this section, we repeat our study of the chevron
structure using the modified Chen–Lubensky functional for smectic A liquid crystals
presented in [21, 20]. We start by reformulating the energy in order to better under-
stand how the layer evolves from the undulations to the chevron profiles.

The Chen–Lubensky model for smectic A liquid crystals is given by

(3.1)

∫
Ω

(
D|D2

nψ|2 + C⊥|Dnψ|2 +K|∇n|2 + b

2

(
|ψ|2 − r

b

)2
− χaH

2(n · h)2
)
dx,

where Dn = ∇− iqn, D2
n = Dn · Dn, and D,C⊥, b, and r = TNA − T are positive

constants. As for the de Gennes energy, we assume that the smectic order parameter
ψ(x) = ρ(x)eiqω(x) has a constant density ρ, and nondimensionalize with respect
to the thickness of the sample by making the change of variables x̄ = x/d in Ω =
(−L,L)2 × (−d, d) ⊂ R

3. Hence, we obtain

GC(ϕ,n) =
dK

ε

∫
Ω̃

(
D1ε(Δϕ−∇ · n)2 + D2

2ε
|∇ϕ− n|4(3.2)

+
1

ε
|∇ϕ− n|2 + ε|∇n|2 − τ(n · h)2

)
dx̄,
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Fig. 1. Plot of the double well potential W (θ) for D2 = 1, and various values of σ.

where D1 = Dρ2q2

K , D2 = 2Dq2

C⊥
, ϕ = ω

d , ε = λ
d , λ =

√
K

C⊥q2ρ2 , τ = χaH
2d2ε

K , and

Ω̃ = (−l, l)2 × (−1, 1), l = L
d . Note how the energy includes the same parameters ε

and λ which appear in the de Gennes reformulation of section 2. The functional (3.2)
has been studied for the onset of undulations in [14], where the authors consider two
boundary conditions for the layer variable ϕ, and prove that the critical fields are
estimated at 1 and π, respectively. Here, as in section 2 we consider larger values of τ
by setting τ = σ

ε with σ = O(1), where the chevron structure is seen experimentally.
We study the case n ∈ S

1, and assume ϕ = z − g(x), where g denotes the layer
displacement. We again take h = e1, and then set n = (sin θ, 0, cos θ) with θ = θ(x),
θ ∈ (−π, π], and I = (−l, l).

To highlight the double well structure of the potential, we rewrite 1 − cos θ =
2 sin2 θ

2 and add a constant. In conclusion, we are led to work with the energy

FC
ε (θ, g) =

∫
I

[
D1ε(g

′′
+ cos θ θ′)2 +

D2

2ε
(g′ + sin θ)4 +

1

ε
(g′ + sin θ)2

(3.3)

+
4D2

ε
(g′ + sin θ)2 sin4

θ

2
+ ε θ′2 +

1

ε
W (θ)

]
dx,

where

(3.4) W (θ) = 8D2 sin
8 θ

2
+ 4(1 + σ) sin4

θ

2
− 4σ sin2

θ

2
+ a0.

The constant a0 is chosen so as to ensure that W (θ) is nonnegative. Direct compu-
tations show that for θ ∈ [−π, π], W (θ) presents a double well potential, and that,
denoting the zero set of W by {±β} with β > 0, one has β = α when D2 = 0, and
β approaching α from the left as D2 decreases to 0. We provide some details on the
behavior of the zeros of W as function of D2 and σ in subsection 5.2. In particular,
from (5.10) and (5.11) we see that sinβ > 0 whenever σ > 0. In Figure 1, we present
a plot of W for fixed D2 and various values of σ. We define the sets

YC = {(θ, g) ∈W 1,2(I)×W 2,2(I) : θ(−l) = θ(l), g(−l) = g(l), g′(−l) = g′(l)},(3.5)

AC =

{
(θ, g) ∈ BV (I, {±β})×W 1,2(I) :(3.6)

g′ ∈ BV (I), g′ + sin θ = 0 a.e,

∫
I

θ = 0

}
,
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and the functionals

(3.7) GC
ε (θ, g) :=

{
Fε(θ, g) if (θ, g) ∈ YC ,
+∞ else,

and

(3.8) GC
0 (θ, g) :=

{∫
I
|(Φ ◦ θ)′|+ |Φ(θ̃(l))− Φ(θ̃(−l))| if (θ, g) ∈ AC ,

+∞ else;

in here Φ(s) = 2
∫ s

−β

√
W (t) dt, while θ̃(±l) denotes the trace of θ on ±l. Note that

for (θ, g) ∈ AC ,

(3.9)

∫
I

|(Φ ◦ θ)′| = Φ(β)(number of jumps).

A Γ-convergence analysis for the functional GC
ε as ε tends to zero results in a picture

analogous to the one obtained for the de Gennes functional Gε in section 2. This shows
that the de Gennes model captures the essence of the chevron creation phenomenon
seen in experiments. In particular, we have the following result.

Theorem 3.1. Let {(θj , gj)} ∈ YC be a sequence of minimizers to GC
εj for εj → 0.

Then there are sequences of numbers {aj} ⊂ {±1} and {cj} ⊂ (−l, l) such that

(θ̂j , ĝj) → (θ, g) in L1(I)× L2(I), where

θ̂j(x) = ajθj(x+ cj), ĝj(x) = ajgj(x+ cj),

θ = βχJ − β(1− χJ ) with J = (−l/2, l/2).

Furthermore, G0(θ, g) = 2Φ(β).
Proof. By following the proof of Theorem 2.4, the result is a consequence of

Proposition 3.2, Lemmas 3.3 and 3.4 below, and the uniqueness of the minimizing
pattern of GC

0 . By the definition of AC a minimizer (θ, g) of GC
0 must have

∫
I θ = 0,

but since the minimizer satisfies θ̃(−l) = θ̃(l), it follows that θ has two internal
jumps.

As before, we start with a compactness result, then proceed to obtain the lower
and upper bounds of Lemmas 3.3 and 3.4. We provide only the essential steps of
the proofs, since the arguments used are combinations of ideas from the standard
Modica–Mortola references [22, 23], and the classical work of Owen, Rubinstein, and
Sternberg [26], which illustrates how to treat boundary conditions under Γ-limits.

Proposition 3.2 (compactness). Let the sequences {εj}j↑∞ ⊂ (0,∞) and
{(θj , gj)}j↑∞ ⊂ YC be such that

εj → 0, and {GC
εj (θj , gj)}j↑∞ is bounded.

There exists a subsequence {(θjk , gjk)} and a (θ, g) ∈ AC such that

θjk → θ in L1(I) and gjk − 1

|I|

∫
I

gjk dx→ g in L2(I).

Proof. Since Gεj (θj , gj) ≤ M , we may assume that (θj , gj) ∈ YC , therefore

2
∫
I

√
W (θ) |θ′j | dx ≤ M, and

∫
I
|(Φ(θj))′| dx ≤ M for Φ(s) = 2

∫ s

−β

√
W (t) dt. This,

together with |θj | ≤ π, implies that Φ ◦ θj is uniformly bounded in W 1,1(I). Hence,
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we may extract a subsequence, not relabeled, such that Φ ◦ θj → w in L1(I) for
some w ∈ BV (I), and, possibly up to another subsequence, a.e. in I. Being Φ
continuous and strictly increasing, we also have θj → Φ−1(w) =: θ a.e., and given
that W (θj) converges to zero a.e., this implies θ(x) ∈ {±β} a.e. in I. Therefore
w = Φ(β)χE +Φ(−β)(1− χE), from which we gather

(3.10) θ = βχE − β(1 − χE),

and since w ∈ BV (I), we conclude θ ∈ BV (I).
From the energy bound, we also know

∫
I
(g′j + sin θj)

2 dx ≤ Mεj , which yields∫
I
|g′j |2 dx ≤ C. Thus there exist a subsequence (not relabeled) and a function g ∈

W 1,2(I) such that gj − 1
2l

∫
I gj dx ⇀ g in W 1,2(I). But

(3.11) 0 = lim inf
j→∞

∫
I

(g′j + sin θj)
2 dx ≥

∫
I

(g′ + sin θ)2 dx

gives g′ + sin θ = 0 a.e. in I. Furthermore, the periodic boundary condition gj(−l) =
gj(l) and (3.11) imply

∫
I
sin θj(x) dx → 0, hence using the dominated convergence

theorem we have
∫
I sin θ = 0, and conclude

∫
I θ = 0 by (3.10).

Lemma 3.3 (lower semicontinuity). For every (θ, g) ∈ L1(I) × L2(I) and every
sequence (θj , gj) ∈ YC such that (θj , gj) converges to (θ, g) in L1(I) × L2(I) there
holds lim infj→∞ GC

εj (θj , gj) ≥ GC
0 (θ, g) and (θ, g) ∈ AC .

Proof. If (θj , gj) /∈ Y, then GC
εj (θj , gj) = ∞ and the inequality is trivial. Consider

(θj , gj) ∈ YC and GC
εj (θj , gj) ≤M for some constant M . By Proposition 3.2, we may

assume that (θ, g) ∈ AC , i.e., θ ∈ BV (I; {±β}). The first term in the Γ-limit is the
essential feature in the Modica–Mortola model. The second term arises due to the
periodic boundary condition. The mass constraint is compatible with the Γ-limit,
however, the boundary value is not compatible. By adding this term we may pass the
periodic boundary condition to the Γ-limit. The proof is motivated by [26].

We set Iδ = (−l− δ, l+ δ), and for f defined on I, we define its periodic extension

f̂ on Iδ, as follows:

f̂(x) =

⎧⎪⎨
⎪⎩
f(x+ 2l) if x ∈ (−l − δ,−l),
f(x) if x ∈ I,

f(x− 2l) if x ∈ (l, l + δ).

Since θ ∈ BV (Iδ), the trace of θ at ±l can be defined (see [15]), as θ̃(l) ≡ θ−(l) and
θ̃(−l) ≡ θ+(−l), where

(3.12) θ−(l) = lim
ρ→0+

1

ρ

∫ l

l−ρ

θ(s) ds and θ+(−l) = lim
ρ→0+

1

ρ

∫ −l+ρ

−l

θ(s) ds.

Hence, we have θ̂ ∈ BV (Iδ), θ̂j converges to θ̂ in L1(Iδ), and

θ̂+(−l) = θ̃(−l), θ̂−(−l) = θ̃(l), θ̂+(l) = θ̃(−l), θ̂−(l) = θ̃(l).

Additionally, using the fact that θj ∈W 1,2(I) and θj(−l) = θj(l), we see that

θ̂+j (l) = θ̂−j (l) = θ̂+j (−l) = θ̂−j (−l).
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Therefore, for 0 < δ ≤ l it holds

2 lim inf
j→∞

GC
εj (θj , gj) ≥

∫
I

|(Φ ◦ θ)′|+
∫
Iδ\Ī

|(Φ ◦ θ̂)′|+ 2 |Φ(θ̃(l))− Φ(θ̃(−l))|,

and if we take δ = l we have 2 lim infj→∞GC
εj (θj , gj) ≥ 2GC

0 (θ, g). The feature (3.9)
can be obtained by the same proof of the lower bound for the Modica–Mortola model:
from θ ∈ BV (I;±{β}).

Next, we derive the upper bound inequality.
Lemma 3.4 (construction). For any (θ, g) ∈ L1(I) × L2(I), there exists a se-

quence (θj , gj) ∈ YC , converging in L1(I)× L2(I) as j → ∞, to (θ, g), and such that
lim supj→∞GC

εj (θj , gj) ≤ GC
0 (θ, g).

Proof. If GC
0 (θ, g) = ∞, the result is trivial. Assume that (θ, g) ∈ AC . The

sequence θj is obtained via the well-known Modica–Mortola construction; see [22].

If θ̃(l) = θ̃(−l), then there are only internal transitions, which given the condition∫
I
θ(s) ds = 0 means there are at least two of them. We follow [22], and introduce the

set A = {t ∈ I : θ(t) = −β}, as well as the functions

h(x) =

{
−dist(x, ∂A) if x ∈ A,

dist(x, ∂A) if x /∈ A,
and χ0(t) =

{
−β if t < 0,

β if t ≥ 0.

Note that around a jump we have θ(x) = χ0(h(x)). The next step is to consider

ψε =
∫ t

−β
( ε2

ε+W (s) )
1
2 ds, which has a well-defined inverse function φε : [0, ηε] → [−β, β],

here ηε = ψε(β) ≤ 2ε1/2β, and that can be smoothly extended outside the interval
[0, ηε] to −β for t < 0, and β if t ≥ ηε. By construction, for every t we have
φε(t) ≤ χ0(t) and φε(t + ηε) ≥ χ0(t), and since 0 < β < π

2 (see subsection 5.2),
we also have sin(φε(t)) ≤ sin(χ0(t)) and sin(φε(t + ηε)) ≥ sin(χ0(t)), Therefore,
we can find a δε ∈ [0, ηε] such that

∫
I sin(φε(h(x) + δε)) dx =

∫
I sin(χ0(h(x))) ds.

Using this construction around each transition point ti of θ, because ηε ≤ 2ε1/2β and∫
I
sin(θ(s)) ds = 0, for εj small enough, we obtain a sequence of θj ’s with θ̃j(−l) =

θ̃j(r) and
∫
I
sin(θj(s)) ds = 0, and which converges to θ in L1(I). Additionally, for

every i, we have

lim sup
j→∞

∫ ti+ηεj
−δεj

ti−δεj

(
εjθ

′2
j +

1

εj
W (θj)

)
≤ 2

∫ β

−β

W (t) dt = Φ(β).

If θ̃(l) �= θ̃(−l), say θ̃(−l) = −β, a boundary layer either at l or −l must occur due
to the periodic boundary condition for θj , and the construction requires some small
changes. By the definition of trace given in (3.12), we can find a small δ such that
θ̃(−l + δ) = −β, and there are no jumps of θ in (−l,−l+ δ). Consider the function

θδ(t) =

{
θ(t) if − l + δ < t < l,

θ(t− 2l) if l < t < l + δ,
(3.13)

and repeat the previous construction for θδ on (−l+δ, l+δ). Calling the corresponding
functions (θδ)j , we have that

θj(t) =

{
(θδ)j(t+ 2l) if − l < t < −l+ δ,

(θδ)j(t) if − l + δ < t < l,
(3.14)
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belongs to YC , for εj > 0 small enough, and

lim sup
j→∞

∫
I

(
εθ′2j +

1

ε
W (θj)

)
≤ GC

0 (θ, g).

Finally, since θj ∈W 1,2(I), we define gj(x) = −
∫ x

−l sin θj(t) dt, then gj ∈W 2,2(I),
gj(−l) = gj(l), and for the sequence (θj , gj) we have our upper bound inequality.

Remark 3.1. The analysis for the flat torus of section 2 can also be applied to
the Chen–Lubensky energy for n over S2 in two dimensions. Setting ϕ = z − g(x, y),
n = n(x, y), and n‖ = (n1, n2), the energy (3.2) becomes

F 2C
ε =

∫
Ω

(
D1ε(Δg +∇ · n)2 + D2

2ε

(
|∇g + n‖|4 + 2(1− n3)

2|∇g + n‖|2
)

+
1

ε
|∇g + n‖|2 + ε|∇n|2 + 1

ε
W2C(n)

)
dxdy

with potential W2C given by W2C(n) =
D2

2 (1 − n3)
4 + (1 − n3)

2 + σ(n2
3 + n2

2) + b0.
Here, as in the one-dimensional case, b0 can be chosen so as to ensure that W2C is
nonnegative with zero as the minimum value. To analyze the zeros of the function
W2C , we set u = 1− n3 and look at the critical points of

f(u) =
D2

2
u4 + u2 + σ(1 − u)2.

Its derivative f ′(u) = 2(D2u
3 + u + σ(u − 1)) is similar to the cubic polynomial

considered in (5.9). Thus, following the calculations of subsection 5.2, we can see that
W2C(n) is also a double well potential with two zeros n± = (±n̄1, 0, B), where

(3.15) B = 1− 2

√
1 + σ

3D2
sinh

[
1

3
arsinh

(
3σ

2(1 + σ)

√
3D2

1 + σ

)]

and B(σ,D2) → A = (1 + σ)−1 as D2 → 0+. Noticing that B = 1 − 2R, where R is
defined in (5.10), one can also see that B = cosβ, for β as in (5.11), that is where
{±β} is a zero set of the double well potential (3.4) for the one-dimensional case.

Next we would like to study the role of the D2 term in W2C . Since f ′ is an
increasing function and f ′( σ

1+σ ) = 2D2(
σ

1+σ )
3 > 0 = f ′(1−B), we have σ

1+σ > 1−B,
which implies that A < B, or equivalently, α > β for D2 positive. Then, the same
proofs of section 2 give that the Γ-limit (2.4) established for the de Gennes energy is
also the Γ-limit of the Chen–Lubensky model, with α replaced by β. More precisely,
we let Y2C = W1,2(T2, S2) ×W 2,2(T2) and define G2C

ε with F 2C
ε in the same way

Gε is defined with Fε. We also define G2C
0 to be G0 with the constant c0 in G0 (2.4)

replaced by c0(β) as in (2.6). Then we have

(3.16) Γ− lim
ε→0

G2C
ε = G2C

0 .

The compactness and lower bound parts follow directly from G2C
ε ≥ Gε. For the

upper bound inequality, the proof of Theorem 2.3 can be applied for G2C
ε as well due

to the particular construction of gε. We also note that

G0(n, g) = 8c0(α)l ≥ 8c0(β)l = G2C
0 (nc, gc),

where (n, g) and (nc, gc) are minimizers of G0 and G2C
0 , respectively.
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4. Numerical simulations. We consider the gradient flow (in L2) of the energy
(2.2) (up to a multiplicative constant), and study the behavior of the solutions with
Dirichlet boundary conditions for both n and φ on the top and bottom plates. For
the sawtooth undulation, periodic boundary conditions are imposed for both n and
φ in the x and y directions. The gradient flow equations are

(4.1)

∂φ

∂t
=

1

ε
(Δφ −∇ · n) ,

∂n

∂t
= Πn

(
εΔn+

1

ε
(∇φ− n) + τ(n · h)h

)
,

where we have defined, for a given vector f ∈ R
3, the orthogonal projection onto the

plane orthogonal to the vector n as Πn(f) = f − (n · f)n. This projection appears as
a result of the constraint n ∈ S

2.
As initial condition, we consider a small perturbation from the undeformed state.

More precisely, for all (x, y, z) ∈ Ω, we consider n(x, y, z, 0) = (εu1,εu2,1+εu3)
|(εu1,εu2,1+εu3)| , and

φ(x, y, z, 0) = z+ εφ0, where a small number ε = 0.1, u1, u2, u3, and φ0 are arbitrarily
chosen. We impose a strong anchoring condition for the director field, and a Dirichlet
boundary condition on φ at the top and the bottom plates, that is n(x, y,±1, t) = e3
and φ(x, y,±1, t) = z for all t.

We use a Fourier spectral discretization in the x and y directions, and second order
finite differences in the z direction. The fast Fourier transform is computed using the
FFTW libraries [12]. For the temporal discretization, we combine a projection method
for the variable n [11] with a semi-implicit scheme for φ. We take l = 4, ε = 0.2, and
128 grid points in the x and y directions, which ensure that the transition layers are
accurately resolved.

We solved this system in [13] for the study of layer undulation phenomena in a
two-dimensional domain, Ω = (−l, l)× (−1, 1) and n ∈ S

1, and proved that the layer
undulation occurs at τ = O(1) as the first instability in [13]. The critical fields for
undulational instability are π and 1, when Dirichlet and natural boundary conditions
are imposed on φ at z = ±1, respectively. Here we consider a three-dimensional
domain with n ∈ S

2. One can show that the same estimate of the critical field and
description of the layer undulations can be obtained for the three-dimensional case.
More detailed analysis with various magnetic fields in a three-dimensional domain
will appear in a future publication. In Figure 2 we illustrate the formation of layer
undulations, and confirm that the layer undulations occur at τ = π. Numerical
simulations show that the undeformed state (n = e3, φ = z) is an equilibrium state
at τ = 3 and undulations appear at τ = 3.2. Then the sinusoidal oscillation transforms
into a chevron structure at much stronger fields, as shown in Figure 3.

In Figure 3 we depict the configurations of each component of n and surface of φ
in the middle of the domain, z = 0. The pictures clearly show the zigzag pattern of
the director. The directors and the layers are illustrated with various field strengths
in Figures 2 and 3. One can notice from Figure 3 that the transition paths connecting
n+ and n− do not depend on n2. This is consistent with the explicit form (5.1)
of the d-geodesic curve, which is introduced and proved in Appendix 5.1. It also
indicates that the period becomes larger as the field strength increases. In fact, the
numerical simulations show that the increase of the wavelength occurs simultaneously
with the evolution of the chevron pattern, which is also observed in the experiment
[19, 28].
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Fig. 2. Undulations: Numerical solution of (4.1) with strong anchoring conditions on the
bounding plates. The first and second columns depict scalar components of directors and surface of
the layer in the middle of the cell, respectively, for magnetic field strengths τ = 3, 3.2, 7.

Next, we look at the minimizers of the Chen–Lubensky free energy. The gradient
flow equations associated with the energy (3.2) are given by

(4.2)

∂n

∂t
= −n× n×

(
εΔn−D1ε∇(Δϕ−∇ · n) + D2

ε
|∇ϕ− n|2(∇ϕ− n)

+
1

ε
(∇ϕ− n) + τ(n · h)h

)
,

∂ϕ

∂t
= −D1εΔ(Δϕ−∇ · n) + 2D2

ε
(∂jϕ− nj)(∂ijϕ− ∂inj)(∂iϕ− ni)

+
1

ε
(D2|∇ϕ− n|2 + 1)(Δϕ−∇ · n).

This system of fourth order partial differential equations has been studied in [14]
to investigate the layer undulation phenomena. A new numerical formulation was
presented to reduce (4.2) to a system of second order equations with a constraint,
which resembles the Navier–Stokes equations. The gauge method [10] was adapted
to solve the resulting equations. Details of the numerical methods can be found in
[14]. We consider the rectangular domain Ω = (−l, l) × (−1, 1), where l = 4. We
employ the Dirichlet boundary condition on n = e3 and ϕ = y at the y = ±1 and
periodic boundary conditions at x = ±l. The dimensionless parameters used are
D1 = 0.1, D2 = 0.76, and ε = 0.2.
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Fig. 3. Chevron structures: Numerical solution of (4.1) with strong anchoring conditions on the
bounding plates. The arrangement of rows is the same as in Figure 2. The magnetic field strength
τ = 8, 13, 13.5 for each column.

The first instability from the undeformed state (ϕ = y, n = e2) is observed as
layer undulations at τ = π as in the first row of Figure 4. The stability analysis of
the Chen–Lubensky free energy using Γ-convergence and bifurcation methods at the
critical field is given in [14].

In the first column of Figure 4, we depict the configuration of each component
of n in the middle of the domain, y = 0. Also in here, one can clearly see that the
undulatory pattern transforms to the zigzag pattern of the director. In the second
column we show the layer description given by the contour map of ϕ. In the middle
of the domain the layer profile changes from sinusoidal to sawtooth shape and its
periodicity increases as the field strength increases.

In our analysis we let ϕ(x, y) = y− g(x) and find a minimizer of the energy for g
and n. Since the systems (4.1) and (4.2) are gradient flows of the energy in ϕ and n,
we also present numerical simulations to find a minimizer of (3.3) in a simpler setting,
when D1 = D2 = 0. We use a truncated-Newton algorithm for energy minimization
with a line search [25]. We use a Fourier spectral discretization in the x direction. In
Figure 5 we illustrate a chevron profile for θ and g, where n = (sin θ, 0, cos θ).

5. Appendix.

5.1. Geodesics. The construction of the recovering sequence in Theorem 2.3 in
section 2 is based on the explicit knowledge of a geodesic connecting the minima of
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Fig. 4. Numerical solution of (4.2). The arrangement of rows is the same as in Figure 2.
Onset of undulations is shown in the first row, transformation from periodic oscillations to chevron
structure in the second and third rows.

Fig. 5. Numerical minimizer of (3.3) with D1 = D2 = 0, A = 0.5, and (a) ε = 1 and (b) ε = 0.2.

the well potential of the de Gennes energy. Additionally, the value of the constant c0
given in (2.6) is provided without a proof in [24]; we give below some ideas on how to
derive these two facts.

Intuitively, one expects the infimum in d(n−,n+) to be achieved for the great
arc connecting n− to n+, and a direct computation gives (2.6), by choosing the
parametrization

(5.1) γC(t) = (sin(2αt− α), 0, cos(2αt− α)).
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In fact, the result is true for the distance

dw(ξ, η) = inf

{∫
γ

√
W ds; for γ ∈ C0([0, 1]) and rectifiable,

such that γ(t) ∈ S2, and γ(0) = ξ, γ(1) = η

}
(5.2)

with
∫
γ

√
W ds = lim

∑n
j=1

√
W (γ(rj)) |γ(rj) − γ(rj−1)|, where the limit is as in

the definition of the Riemann integral (see [1, pp. 104–105] for the two-dimensional
case). But, from this we can conclude that the same holds for the distance d, since
the parametrization γC used in the direct computation mentioned above is C1, any
γ ∈ C1([0, 1]) is rectifiable, and for any γ ∈ C1 one has

∫
γ

√
W ds =

∫ 1

0

√
W (γ(r)) |γ′(r)| dr.

Fundamental in understanding why the infimum is achieved along a great arc is
to note how the function W verifies the interesting property that its value at a generic
point of the upper hemisphere having zero y-coordinate is smaller than the value at
any other point on the sphere of the same x-coordinate.

Lemma 5.1. Given P0 = (x0, 0, z0) ∈ S
2 with z0 > 0, for any P ∗

0 = (x0, y
∗
0 , z

∗
0)

we have W (P0) ≤W (P ∗
0 ).

Proof. By definition of W and A = (σ + 1)−1, for a P = (x, y, z) ∈ S
2 we have

W (P ) = σ(1 − x2) + (z − 1)2 − σ
σ+1 , and from this we can see that for x fixed, as y

decreases the constraint P ∈ S
2 implies that |z| increases, hence W (P ) decreases in z

for z > 0. On the other hand, for P = (x, y, z) fixed with z > 0 and Q = (x, y,−z),
clearly W (P ) < W (Q), so the lemma follows.

Let {γj} be a minimizing sequence for c0 = dw(n−,n+). We claim that the
sequence can be chosen so that the following conditions are verified by any element
γ = (x(t), y(t), z(t)) ∈ {γj}:

(i) γ is such that z(t) ≥ 0 for all t;
(ii) γ is such that y(t) ≥ 0 for all t.
Claim (i) follows from remarking that the z-coordinates of n− and n+ are pos-

itive and the fact that for P = (x, y, z) with z > 0, and Q = (x, y,−z) it holds
W (P ) < W (Q), as seen in the proof of Lemma 5.1, and so if we define γ̂(t) =
(x(t), y(t), z(t)) if z(t) ≥ 0, and γ̂(t) = (x(t), y(t),−z(t)) if z(t) < 0, we have that γ̂
is a C0([0, 1]) rectifiable curve of shortest dw-distance.

Claim (ii) holds similarly, since the y-components of n− and n+ are both zero,
hence γ̂(t) = (x(t), y(t), z(t)) if y(t) ≥ 0 and γ̂(t) = (x(t),−y(t), z(t)) if y(t) < 0,
defines a C0([0, 1]) rectifiable curve of shortest dw-distance which verifies (ii).

Lemma 5.2. Let {γj} denote a minimizing sequence for dw(n−,n+), whose ele-
ments verify properties (i) and (ii) above, then for every j it holds

∫
γj

√
W ds ≥

∫
γC

√
W ds,

where γC(t) = (sin(2αt− α), 0, cos(2αt− α)).
Proof. Let γ(t) = (x(t), y(t), z(t)) be a generic element of {γj}, and, for every

ε > 0, pick η1ε > 0 such that for every partition P : r0 = 0 < r1 < · · · < rn−1 < rn = 1,
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with maxj |rj − rj−1| < η1ε , ones has both∣∣∣∣∣
∫
γ

√
W ds−

n∑
j=1

√
W (γ(rj)) |γ(rj)− γ(rj−1)|

∣∣∣∣∣ < ε,

and ∣∣∣∣∣
∫
γC

√
W ds−

n∑
j=1

√
W (γC(rj)) |γC(rj)− γC(rj−1)|

∣∣∣∣∣ < ε.

Additionally, γ ∈ C0([0, 1]) implies that there exists η2ε for which if |r − p| < η2ε
then |x(r) − x(p)| < 2αAη1ε ; recall that x(t) denotes the x-component of γ.

For ε > 0 fixed, pick ηε < min{η1ε , η2ε}, and choose a partition Pε : t0 = 0 < t1 <
· · · < tn−1 < tn = 1, with maxj |tj − tj−1| < ηε. From this partition we build another
partition PC

ε : s0 < s1 < · · · < sm as follows. We denote by xC the x-component
of γC , and set kf = inf{k : tk ∈ Pε and x(tk) ≥

√
1−A2} ≤ n, we then select

s0 = k0 = 0, and for j ≥ 1 we pick the first index kj such that xC(sj−1) < x(tkj ).
If kj = kf we set m = j and sj = sm = 1, otherwise we continue and pick sj such
that xC(sj) = x(tkj ). This process will stop after a finite number of steps m ≤ n,
returning sm = 1, as well as sj−1 < sj for every j, since xC(s) is a strictly increasing
function for 0 < s < 1, and by construction xC(sj−1) < xC(sj).

The partition PC
ε enjoys a few interesting properties, which we describe below.

By construction

(5.3) x(tkj−1) ≤ xC(sj−1) <
√
1−A2,

otherwise tkj−1 would have been picked at the jth step instead of tkj , as well as

(5.4) −
√
1−A2 = xC(s0) ≤ x(tkj ).

And (5.3), since |tkj − tkj−1| < η2ε by the choice of ηε, gives

(5.5) 0 < xC(sj)− xC(sj−1) ≤ x(tkj )− x(tkj−1) < 2αA η1ε .

In turn, (5.5) with −
√
1−A2 ≤ xC(sj) ≤

√
1−A2 and xC(sj) = sin(2α sj − α)

implies

|sj−sj−1| =
1

2α

∣∣∣ arcsin(xC(sj))−arcsin(xC(sj−1))
∣∣∣ ≤ 1

2αA

∣∣∣xC(sj)−xC(sj−1)
∣∣∣ < η1ε ,

as | arcsin(xC(sj))−arcsin(xC(sj−1))| ≤ 1√
1−ξ2

|xC(sj)−xC(sj−1)| for some xC(sj−1) ≤
ξ ≤ xC(sj). Finally, it is possible to show that

(5.6) |γC(sj)− γC(sj−1)| ≤ |γ(tkj )− γ(tkj−1)|.

To see this, we first notice that since 0 < α < π
2 , by picking η1ε small enough, because

of (5.3) and (5.4), we can assume −1 < −
√
1−A2−2αAη1ε < x(tkj−1) <

√
1−A2, so

that there exists a largest s− such that s− ≤ sj−1 and xC(s−) = x(tkj−1); note here
s− could be smaller than 0 but not larger than 1. But even if s− < 0, again by taking
η1ε sufficiently small, by the continuity of xC , we can assume 0 ≤ 2α (sj − sj−1) ≤
2α (sj−s−) ≤ π, and have cos(2α (sj−sj−1)) ≥ cos(2α (sj −s−)), from which, since

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.8

2.
25

2.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SAWTOOTH PROFILE IN SMECTIC A LIQUID CRYSTALS 235

a direct computation for every p, r gives |γC(p)− γC(r)|2 = 2− 2 cos(2α (p− r)), we
obtain

(5.7) |γC(sj)− γC(sj−1)| ≤ |γC(sj)− γC(s−)|.

Therefore, to derive (5.6) it will be enough to prove

(5.8) |γC(sj)− γC(s−)| ≤ |γ(tkj )− γ(tkj−1)|.

We set γC(sj) = (φ, 0, ψ), γC(s−) = (α0, 0, η), γ(tkj ) = (φ, χ∗, ψ∗), and γ(tkj−1) =
(α0, β∗, η∗), and remind the reader that these are points on S

2 for which χ∗, ψ∗, β∗,η∗
and α0 are positive, since γ satisfies conditions (i) and (ii). Therefore, we can rewrite

(ψ − η)2 = ψ2 − 2ψη + η2 = χ2
∗ + ψ2

∗ − 2ψη + β2
∗ + η2∗

= (χ∗ − β∗)2 + (ψ∗ − η∗)2 − 2ψη + 2χ∗β∗ + 2ψ∗η∗,

so that |γC(sj)−γC(s−)|2 = |γ(tkj )−γ(tkj−1)|2−2ψη+2χ∗β∗+2ψ∗η∗, and inequality
(5.6) follows by noticing that

ψ2 η2 = (χ2
∗ + ψ2

∗)(β
2
∗ + η2∗) = χ2

∗β
2
∗ + χ2

∗η
2
∗ + ψ2

∗β
2
∗ + ψ2

∗η
2
∗

= χ2
∗β

2
∗ + ψ2

∗η
2
∗ + (χ∗η∗ − ψ∗β∗)2 + 2χ∗η∗ψ∗β∗

= (χ∗β∗ + ψ∗η∗)2 + (χ∗η∗ − ψ∗β∗)2 ≥ (χ∗β∗ + ψ∗η∗)2.

In conclusion, for every ε > 0, considering the partitions Pε and PC
ε and using

Lemma 5.1, we have

∫ 1

0

√
W (γ(t)) |γ′(t)| dt ≥

n∑
j=1

√
W (γ(tj)) |γ(tj)− γ(tj−1)| − ε

≥
m∑
j=1

√
W (γ(tkj )) |γ(tkj )− γ(tkj−1)| − ε

≥
m∑
j=1

√
W (γC(sj)) |γ(tkj )− γ(tkj−1)| − ε

≥
m∑
j=1

√
W (γC(sj)) |γC(sj)− γC(sj−1)| − ε

≥
∫ 1

0

√
W (γC(t)) |γ′C(t)| dt− 2ε

from which the lemma follows.

5.2. Chen–Lubensky double well potential. To analyze the zeros of the
function W in (3.4), we set x = sin θ/2, and look at the critical points of

f(x) = 8D2x
8 + 4(1 + σ)x4 − 4σx2.

Taking the derivative, we find f ′(x) = 64D2 x (x
6+ 1

4D2
(σ+1)x2− σ

8D2
) from which,

setting u = x2, we are led to the cubic polynomial equation

(5.9) u3 +
1

4D2
(σ + 1)u− σ

8D2
= 0.

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.8

2.
25

2.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Since 1
4D2

(σ + 1) > 0, this equation has only one real root given by the formula

(5.10) R(σ,D2) =

√
σ + 1

3D2
sinh

(
1

3
arsinh

(
3

2

σ

σ + 1

√
3D2

σ + 1

))
.

Using direct computations and a contradiction argument, it’s straightforward to see
that the limit limt→0

1
t sinh(

1
3 arsinh(

3
2 t)) =

1
2 implies

R(0, D2) = 0, lim
σ→∞R(σ,D2) =

1

2
,

lim
D2→0+

R(σ,D2) =
σ

2(σ + 1)
, 0 ≤ R(σ,D2) <

1

2
,

and that f is a symmetric even function with a maximum at x = 0 and minima at
x = ±

√
R. In terms of W (θ), picking a0 = −f(

√
R), for fixed σ and D2 positive, W

is a symmetric even function of θ that has only two zeros, of opposite sign:

(5.11) ±β(σ,D2) = ±2 arcsin
√
R(σ,D2),

which verify

β(0, D2) = 0, lim
σ→∞β(σ,D2) =

π

2
, lim

D2→0+
β(σ,D2) = α, 0 ≤ β(σ,D2) <

π

2
.
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[14] C. J. Garćıa-Cervera and S. Joo, Analysis and simulations of the Chen-Lubensky energy for
smectic liquid crystals: Onset of undulations, Commun. Math. Sci., 12 (2014), pp. 1155–
1183.

[15] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr. Math., Birkhäuser,
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