365 research outputs found

    Physical Conditions in Barnard's Loop, Components of the Orion-Eridanus Bubble, and Implications for the WIM Component of the ISM

    Get PDF
    We have supplemented existing spectra of Barnard's Loop with high accuracy spectrophotometry of one new position. Cloudy photoionization models were calculated for a variety of ionization parameters and stellar temperatures and compared with the observations. After testing the procedure with recent observations of M43, we establish that Barnard's Loop is photoionized by four candidate ionizing stars, but agreement between the models and observations is only possible if Barnard's Loop is enhanced in heavy elements by about a factor of 1.4. Barnard's Loop is very similar in properties to the brightest components of the Orion-Eridanus Bubble and the Warm Ionized Medium (WIM). We are able to establish models that bound the range populated in low-ionization color-color diagrams (I([SII])/I(H{\alpha}) versus I([NII])/I(H{\alpha})) using only a limited range of ionization parameters and stellar temperatures. Previously established variations in the relative abundance of heavy elements render uncertain the most common method of determining electron temperatures for components of the Orion-Eridanus Bubble and the WIM based on only the I([NII])/I(H{\alpha}) ratio, although we confirm that the lowest surface brightness components of the WIM are on average of higher electron temperature. The electron temperatures for a few high surface brightness WIM components determined by direct methods are comparable to those of classical bright H II regions. In contrast, the low surface brightness HII regions studied by the Wisconsin H{\alpha} Mapper are of lower temperatures than the classical bright HII regions

    The VLT-FLAMES Tarantula Survey XVI. The optical+NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    Full text link
    Context: The commonly used extinction laws of Cardelli et al. (1989) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical+NIR photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical+NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions such as the family of extinction laws. Results: We derive a new family of optical+NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag.Comment: Accepted for publication in A&A. Revised version corrects language and fixes typos (one of them caught by David Nicholls). Figure 4 has poor quality due to the size restrictions imposed by arXi

    Scientometric Analysis of Hiking Tourism and Its Relevance for Wellbeing and Knowledge Management

    Get PDF
    Hiking is a sports activity that takes place in the natural environment. From the point of view of well-being, it is an aerobic activity that prevents and improves cardiovascular diseases. According to data provided by the United Nations, within the framework of the International Year of Mountains, mountain tourism represents around 15% to 20% of total world tourism revenue. This approach aims to critically analyze the scientific production on trail tourism (HT) with contributions from authors from around the world from 1991 to 2022, in order to respond to the connection between this research, knowledge management and the sustainable development of the industry. Key knowledge contributions are examined using a scientometric approach as a method (spatial, production, impact, and relational) based on registry data stored in the Web of Science (JCR and ESCI). Regarding the results, there has been an increase in scientific production in the last decade, which is manifested in the quality of the publications

    G Protein-Coupled Estrogen Receptor Immunoreactivity Fluctuates During the Estrous Cycle and Show Sex Differences in the Amygdala and Dorsal Hippocampus

    Get PDF
    G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.This study was supported by Ministero dell'Istruzione, dell'Università e della Ricerca, Italy (MIUR project Dipartimenti di Eccellenza 2018–2022) to Department of Neuroscience Rita Levi Montalcini, Agencia Estatal de Investigación, Spain (BFU2017-82754-R, PSI2017-86396-P), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid and Fondos FEDER, GRUPOS UCM-BSCH 951579. MM fellowship was generously granted by Prof. G. C. Bergui

    Compilation of parameterized seismogenic sources in Iberia for the SHARE European-scale seismic source model.

    Get PDF
    Abstract: SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded project (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are compiling a fully-parameterized active fault database for Iberia and the nearby offshore region. The principal goal of this initiative is for fault sources in the Iberian region to be represented in SHARE and incorporated into the source model that will be used to produce seismic hazard maps at the European scale. The SHARE project relies heavily on input from many regional experts throughout the Euro-Mediterranean region. At the SHARE regional meeting for Iberia, the 2010 Working Group on Iberian Seismogenic Sources (WGISS) was established; these researchers are contributing to this large effort by providing their data to the Iberian regional integrators in a standardized format. The development of the SHARE Iberian active fault database is occurring in parallel with IBERFAULT, another ongoing effort to compile a database of active faults in the Iberian region. The SHARE Iberian active fault database synthesizes a wide range of geological and geophysical observations on active seismogenic sources, and incorporates existing compilations (e.g., Cabral, 1995; Silva et al., 2008), original data contributed directly from researchers, data compiled from the literature, parameters estimated using empirical and analytical relationships, and, where necessary, parameters derived using expert judgment. The Iberian seismogenic source model derived for SHARE will be the first regional-scale source model for Iberia that includes fault data and follows an internationally standardized approach (Basili et al., 2008; 2009). This model can be used in both seismic hazard and risk analyses and will be appropriate for use in Iberian- and European-scale assessments

    NGC 1624-2: A slowly rotating, X-ray luminous Of?cp star with an extraordinarily strong magnetic field

    Get PDF
    This paper presents a first observational investigation of the faint Of?cp star NGC 1624-2, yielding important new constraints on its spectral and physical characteristics, rotation, magnetic field strength, X-ray emission and magnetospheric properties. Modeling the spectrum and spectral energy distribution, we conclude that NGC 1624-2 is a main sequence star of mass M {\simeq} 30 M{\odot}, and infer an effective temperature of 35 {\pm} 2 kK and log g = 4.0 {\pm} 0.2. Based on an extensive time series of optical spectral observations we report significant variability of a large number of spectral lines, and infer a unique period of 157.99 {\pm} 0.94 d which we interpret as the rotational period of the star. We report the detection of a very strong - 5.35 {\pm} 0.5 kG - longitudinal magnetic field , coupled with probable Zeeman splitting of Stokes I profiles of metal lines confirming a surface field modulus of 14 {\pm} 1 kG, consistent with a surface dipole of polar strength >~ 20 kG. This is the largest magnetic field ever detected in an O-type star, and the first report of Zeeman splitting of Stokes I profiles in such an object. We also report the detection of reversed Stokes V profiles associated with weak, high-excitation emission lines of O iii, which we propose may form in the close magnetosphere of the star. We analyze archival Chandra ACIS-I X-ray data, inferring a very hard spectrum with an X-ray efficiency log Lx/Lbol = -6.4, a factor of 4 larger than the canonical value for O-type stars and comparable to that of the young magnetic O-type star {\theta}1 Ori C and other Of?p stars. Finally, we examine the probable magnetospheric properties of the star, reporting in particular very strong magnetic confinement of the stellar wind, with {\eta}* {\simeq} 1.5 {\times} 10^4, and a very large Alfven radius, RAlf = 11.4 R*.Comment: 17 pages, MNRAS accepted and in pres

    Eliminating Error in the Chemical Abundance Scale for Extragalactic HII Regions

    Get PDF
    In an attempt to remove the systematic errors which have plagued the calibration of the HII region abundance sequence, we have theoretically modeled the extragalactic HII region sequence. We then used the theoretical spectra so generated in a double blind experiment to recover the chemical abundances using both the classical electron temperature + ionization correction factor technique, and the technique which depends on the use of strong emission lines (SELs) in the nebular spectrum to estimate the abundance of oxygen. We find a number of systematic trends, and we provide correction formulae which should remove systematic errors in the electron temperature + ionization correction factor technique. We also provide a critical evaluation of the various semi-empirical SEL techniques. Finally, we offer a scheme which should help to eliminate systematic errors in the SEL-derived chemical abundance scale for extragalactic HII regions.Comment: 24 pages, 9 Tables, 13 figures, accepted for publication in MNRAS. Updated considering minor changes during the final edition process and some few missing reference

    Chemical abundances in Orion protoplanetary discs: integral field spectroscopy and photoevaporation models of HST 10

    Get PDF
    Photoevaporating protoplanetary discs (proplyds) in the vicinity of hot massive stars, such as those found in Orion, are important objects of study for the fields of star formation, early disc evolution, planetary formation and H II region astrophysics. Their element abundances are largely unknown, unlike those of the main-sequence stars or the host Orion nebula. We present a spectroscopic analysis of the Orion proplyd HST 10, based on integral field observations with the Very Large Telescope/FLAMES fibre array with 0.31 × 0.31 arcsec2 spatial pixels. The proplyd and its vicinity are imaged in a variety of emission lines across a 6.8 × 4.3 arcsec2 area. The reddening, electron density and temperature are mapped out from various line diagnostics. The abundances of helium, and eight heavy elements, are measured relative to hydrogen using the direct method based on the [O III] electron temperature. The abundance ratios of O/H and S/H are derived without resort to ionization correction factors. We construct dynamic photoevaporation models of HST 10 with the CLOUDY microphysics code that validate the oxygen and sulphur abundances. With the exception of [O I] λ6300 and [S II] λ4069, the model fit is satisfactory for all spectral lines arising from the proplyd. The models show that the classic ionization correction factor for neon significantly underestimates (0.4 dex) this element's abundance in the low ionization conditions of HST 10. Apart from iron, whose gas-phase abundance is ∼0.3 dex lower than in the local Orion nebula, most other elements in the proplyd do not show substantially different gas-phase abundances from the nebula. The abundances of carbon, oxygen and neon in HST 10 are practically the same as those in B-type stars in Orion

    Clinical and laboratory features of anti-MAG neuropathy without monoclonal gammopathy

    Get PDF
    Antibodies against myelin-associated glycoprotein (MAG) almost invariably appear in the context of an IgM monoclonal gammopathy associated neuropathy. Very few cases of anti-MAG neuropathy lacking IgM-monoclonal gammopathy have been reported. We investigated the presence of anti-MAG antibodies in 69 patients fulfilling diagnostic criteria for CIDP. Anti-MAG antibodies were tested by ELISA and confirmed by immunohistochemistry. We identified four (5.8%) anti-MAG positive patients without detectable IgM-monoclonal gammopathy. In two of them, IgM-monoclonal gammopathy was detected at 3 and 4-year follow-up coinciding with an increase in anti-MAG antibodies titers. In conclusion, anti-MAG antibody testing should be considered in chronic demyelinating neuropathies, even if IgM-monoclonal gammopathy is not detectable
    corecore