25 research outputs found

    Magnetorheological behavior of magnetite covered clay particles in aqueous suspensions

    Get PDF
    Montmorillonite clay particles coated with magnetite nanoparticles suspended in aqueous media behave as magnetorheological fluids with enhanced stability as compared to conventional ones. In this work, the study of the magnetorheological behavior of these suspensions of magnetite-clay composite particles has been carried out. For this purpose, both steady and dynamic rheological measurements were carried out in the absence and in the presence of external magnetic fields. In the first kind of experiments, the rheograms of the suspensions (shear stress versus shear rate plot) are analyzed as a function of the strength of the magnetic field applied. In the second one, oscillatory stresses are applied to the system, and the storage modulus is studied as a function of the external magnetic field. In the absence of magnetic field, the suspensions develop a weak yield stress due to the aggregation of the magnetite covered clay particles. In the presence of magnetic field, the yield stress is strongly dependent on the magnetic field strength inside the samples, demonstrating that the suspensions experience a magnetorheological effect, moderate when the magnetic field strength is weak and stronger for values of magnetic field higher than 150–200 kA/m. Actually, the most intriguing result is the change of the trend in the dependence of the yield stress with the field. This dependence is approximately linear with the field for strength values smaller than 150–200 kA/m. On the other hand, for higher values, the yield stress increases with magnetic field following a power law with exponent 4.5.The results are interpreted by means of a model that relates the structure of the particles in the suspensions to the magnetic field applied and using the interaction energy between particles calculated by the extended DLVO theory to include magnetic interaction.Financial support by Ministerio de Ciencia e Innovación (Spain) under project No FIS2009-07321, and Junta de Andalucía (Spain) under Project Nos. P08-FQM-3993 and P09-FQM-4787 is gratefully acknowledge

    Scaling between viscosity and hydrodynamic/magnetic forces in magnetic fluids

    Get PDF
    The aim of this work is the investigation of the magnetorheological behavior, under both simple steady- and oscillatory-shear flow regimes, of fluids composed by micron-sized iron particles (average diameter 930 ± 330 nm) dispersed in silicone oil. Magnetic fields ranging from 279 A/m (0.35 mT) to 1727 A/m (2.17 mT) were applied to the suspensions. The effect of silica nanoparticles as stabilizer of the suspensions has also been considered. The study has been made by the scaling between the viscosity of the suspension and the ratio of hydrodynamic to magnetic forces acting on the dispersed particles, given by the dimensionless Mason number (Mn), and interpreted in terms of the chainlike model taken from the theory of Martin and Anderson (J. Chem. Phys. 104 (1996) 4814-4827). The model is quite well accomplished for iron suspensions of different (20 % and 30 %) volume fraction without any stabilizing agent. The presence of added silica nanoparticles in the suspension hinders the formation of regular iron structures induced by the magnetic field, especially at the lowest applied magnetic fields. Thus the model becomes not applicable to these cases. Viscometry has been shown to be more adequate than oscillometry for scaling the viscous properties of magnetorheological suspensions with microscopic interparticle forces in terms of Mn number.Financial support from MEC (Spain) and FEDER funds (EU) (Project MAT2005-07746-C02-01) and Junta de Andalucía, Spain (PE-FQM-410) are gratefully acknowledged

    Inverse magnetorheological fluids

    Get PDF
    We report a new kind of field-responsive fluids consisting of suspensions of diamagnetic (DM) and ferromagnetic (FM) microparticles in ferrofluids. We designate them as inverse magnetorheological (IMR) fluids for analogy with inverse ferrofluids (IFFs). Observations on the particle self-assembly in IMR fluids upon magnetic field application showed that DM and FM microparticles were assembled into alternating chains oriented along the field direction. We explain such assembly on the basis of the dipolar interaction energy between particles. We also present results on the rheological properties of IMR fluids and, for comparison, of IFFs and bidispersed magnetorheological (MR) fluids. Interestingly, we found that upon magnetic field, the rheological properties of IMR fluids were enhanced with respect to bidispersed MR fluids with the same FM particle concentration, by an amount greater than the sum of the isolated contribution of DM particles. Furthermore, the field-induced yield stress was moderately increased when up to 30 % of the total FM particle content was replaced with DM particles. Beyond this point, the dependence of the yield stress on the DM content was non-monotonic, as expected for FM concentrations decreasing to zero. We explain these synergistic results by two separate phenomena: the formation of exclusion areas for FM particles due to the perturbation of the magnetic field by DM particles, and the dipole-dipole interaction between DM and FM particles, which enhances the field-induced structures. Based on this second phenomenon, we present a theoretical model for the yield stress that semi-quantitatively predicts the experimental results.Projects 12-01-00132, 13-02-91052, 13-01-96047, 14-08-00283 (Russian Fund of Fundamental Investigations), 2.1267.2011 (Ministry of Education of Russian Federation), the Act 211 (Government of the Russian Federation № 02.A03.21.0006). The University of Granada (Acción Integrada con Rusia; Plan Propio 2011). L. Rodríguez-Arco acknowledges financial support by Secretaría de Estado de Educación, Formación Profesional y Universidades (MECD, Spain) through its FPU program

    Role of particle clusters on the rheology of magneto-polymer fluids and gels

    Get PDF
    Even in absence of cross-linking, at large enough concentration, long polymer strands have a strong influence on the rheology of aqueous systems. In this work, we show that solutions of medium molecular weight (120,000 – 190,000 g/mol) alginate polymer retained a liquid-like behaviour even for concentrations as large as 20 % w/v. On the contrary, solutions of alginate polymer of larger (and also polydisperse) molecular weight (up to 600,000 g/mol) presented a gel-like behaviour already at concentrations of 7 % w/v. We dispersed micron-sized iron particles at a concentration of 5 % v/v in these solutions, which resulted either in stable magnetic fluids or gels, depending on the type of alginate polymer employed (medium or large molecular weight, respectively). These magneto-polymer composites presented a shear-thinning behaviour that allowed injection through a syringe and recovery of the original properties afterwards. More interestingly, application of a magnetic field resulted in the formation of particle clusters elongated along the field direction. The presence of these clusters intensely affected the rheology of the systems, allowing a reversible control of their stiffness. We finally developed theoretical modelling for the prediction of the magnetic-sensitive rheological properties of these magneto-polymer colloids.Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofounded by Fondo Europeo de Desarrollo Regional, FEDER, European Union, project FIS2017-85954-R. Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006; 3.1438.2017/4.6; 3.5214.2017/6.7 as well as to the Russian Fund of Basic Researches, project 19-52-1202

    On the effect of wall slip on the determination of the yield stress of magnetorheological fluids

    Get PDF
    We studythe effect ofwall slip on themeasuredvalues ofthe yield stress of magnetorheological (MR) fluids. For this aim we used a rheometer provided with parallel-plate geometries of two types, distinguished by having smooth or rough surfaces. We found that wall slip led to the underestimation of the yield stress when measuring geometries with smooth surfaces were used,and that this underestimation was more pronounced for the static than for the dynamic yield stress. Furthermore, we analysed the effect that both irreversible particle aggregation due to colloidal interactions and reversible magnetic field-induced particle aggregation had on the underestimation provoked by wall slip. We found that the higher the degree of aggregation the stronger the underestimation of the yield stress. At low intensity of the applied magnetic field irreversible particle aggregation was dominant and, thus, the underestimation of the yield stress was almost negligible for well-dispersed MR fluids, whereas it was rather pronounced for MR fluids suffering from irreversible aggregation. As the magnetic field was increased the underestimation of the yield stress became significant even for the best dispersedMR fluid.This study was supported by project FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad, Spain, co-funded by ERDF, European Union), by the Russian Science Foundation, project 14-19-00989 and by Program of Ministry of Science and Education of the Russian Federation, project 3.12.2014/

    Stability behaviour of composite magnetorheological fluids by an induction method

    Get PDF
    Este artículo puede consultarse en la siguiente dirección de la editorial: http://jim.sagepub.com/content/early/2015/03/26/1045389X15577656.full.pdf+htmlIn this work we study the stability behaviour of composite magnetorheological (MR) fluids consisting of magnetic (iron) and non-magnetic (poly (methylmethacrylate), PMMA) particles dispersed in mineral oil. Because of the opacity of the suspensions, optical methods traditionally employed for evaluation of the gravitational settling in colloidal suspensions are not suitable for sedimentation follow-up in this case. For this reason, we use an alternative method based on the evaluation of the resonant frequency of the inductance of a thin coil surrounding the sample The movement of the coil along the height of the container at specified steps and time intervals allows obtaining information about the local volume fraction of particles inside the tube. The obtained successive profiles for the multi-component suspensions show a decrease of the iron particle settling and of the initial rate of settling as the PMMA volume fraction is increased. Finally, the increase of the PMMA concentration gives rise to an improvement of the rheological properties upon magnetic field application for a given concentration of iron. Both a strongrheological response and a good colloidal stability are essential for practical applications.Proyectos PE2012-FQM694 (Junta de Andalucía, Spain)y FIS2013-47666-C3-1-R (Ministerio de Economía y Competitividad, Spain). L. R.-A. agrradece a la Universidad de Granada su contrato puente (Plan Propio de Investigación, UGR)

    Biomedical applications of magnetic hydrogels

    Get PDF
    Hydrogels are used in biomedical applications thanks to their high-water content, porosity, and their ability to easily modify their properties (mechanical, chemical, microstructure, etc.). Hydrogels are the materials that most resemble the extracellular matrix of mammals. In recent years, magnetic hydrogels have become especially important. These are the result of combining magnetic nanoparticles with different hydrogel matrices. Among its properties, they have the ability to be remotely controlled modifying their physical properties, such as stability, stiffness and temperature (magnetic hyperthermia). Such unique characteristics make magnetic hydrogels very promising in biomedical applications such as, tissue engineering, drug delivery, biosensors, and cancer therapy. At this respect, this chapter focuses on the main biomedical applications of magnetic hydrogels and the most important discoveries on the subject.This study was supported by project FIS2017?85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). CGV acknowledges financial support by Ministerio de Ciencia, Innovación y Universidades and University of Granada, Spain, for her FPU17/00491 grant

    In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering

    Get PDF
    The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilagelike tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía, Industria y Competitividad, MINECO Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union), FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union), and by the Consejería de Salud y Familias, Junta de Andalucía, Spain, Grant SAS CS PI-0257-2017

    Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis

    Get PDF
    For the first time the influence of the chirality of the gel fibers in protein crystallogenesis has been studied. Enantiomeric hydrogels 1 and 2 were tested with model proteins lysozyme and glucose isomerase and a formamidase from B. cereus. Crystallization behaviour and crystal quality of these proteins in both hydrogels are presented and compared.MICINN (Spain) projects BIO2010-16800 (JAG), CTQ-2011.22455 (LAC & JMC), CTQ2012-34778 (JJDM & ALG), “Factoría Española de Cristalización” Consolider-Ingenio 2010 (JAG & MCM) and EDRF Funds (JAG, LAC & JMC), P12-FQM-2721 (LAC) Junta de Andalucía.MINECO,Project No. FIS2013-41821-R

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra
    corecore