60 research outputs found
Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study
BACKGROUND AND AIMS: Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content. METHODS: A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy. RESULTS: Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened. CONCLUSIONS: Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury
3D bioactive composite scaffolds for bone tissue engineering
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed
Four Cases of Interstitial Lung Disease Induced by Erlotinib 
and A Review of the Literatures
Erlotinib is an agent of oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors which are used for non-small cell lung cancer. Although this class of agents is considered to be relatively safe, the most serious, but rare, adverse reaction is drug-associated interstitial lung disease (ILD). ILD induced by gefitinib been often described, but the ILD induced by erlotinib is relatively less well known. We here describle four cases of ILD related to erlotinib and review recent literatures to help physicians earlier alert erlotinib-induced ILD. It is important to carefully monitor pulmonary symptoms in all patients who are receiving erlotinib. Early diagnosis and timely intervention is critical in the treatment of drug-induced ILD
A Chinese-Naxi Tree-to-Tree Machine Translation Method Based on Subtree Alignment
In allusion to the syntactic differences between Chinese and Naxi language, the thesis presents a tree-to-tree method of Chinese-Naxi machine translation based on subtree alignment. In this method, we define a subtree alignment model, providing its inference probability, and solve the alignment missing problem of Chinese-Naxi alignment by updating nodes (insert or delete). And then we train the subtree alignment model by EM algorithm, merging subtree alignment to the translation model. Finally we extract the template of Chinese-Naxi translation, adopting the extraction algorithm based on matrix, and implement the Chinese-Naxi machine translation. Result of the contrast experiment shows that, compared to the Chinese-Naxi machine translation method based on tree-to-tree translation, the translation accuracy increased after importing subtree alignment
A multiobjective state transition algorithm based on decomposition
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Aggregation functions largely determine the convergence and diversity performance of multi-objective algorithms in decomposition methods. Nevertheless, the traditional Tchebycheff function does not consider the matching relationship between the weight vectors and candidate solutions. To deal with this issue, a new multiobjective state transition algorithm based on modified decomposition method (MOSTA/D) is proposed. According to the analysis of the relationship between the weight vectors and candidate solutions under the Tchebycheff decomposition scheme, the concept of matching degree is introduced which employs vectorial angles between weight vectors and candidate solutions. Based on the matching degree, a new modified Tchebycheff aggregation function is proposed in MOSTA/D. It can adaptively select the candidate solutions which are better matched with the weight vectors. This proposed MOSTA/D decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them in a collaborative manner. Each individual solution in the population of MOSTA/D is associated with a subproblem. Four mutation operators in STA are adopted to generating candidate solutions on subproblems and maintaining the population diversity. Relevant experimental results show that the proposed algorithm is highly competitive in comparison with other state-of-the-art evolutionary algorithms on tackling a set of benchmark problems with complicated Pareto fronts and a typical engineering optimization problem
Hormone Signals Involved in the Regulation of Cucumber Seedling Lateral Branch Elongation by Far-Red Light
Cucumber (Cucumis sativus L.) lateral branch elongation is influenced by a variety of environmental signals, including light [e.g., far-red (FR) light] and hormones. In this experiment, the effect of FR light on the lateral branch elongation of cucumber (‘Zhongnong No. 26’) seedlings was investigated. The results showed that FR light significantly inhibited the lateral branch elongation of cucumber seedlings. In addition, FR light significantly increased the auxin (indole-3-acetic acid, IAA) content, decreased the cytokinin (CTK; Zeatin) content, and suppressed the expression of most CTK synthetic-related genes, such as IPTs, in cucumber seedlings. The lateral branch elongation of cucumber seedlings was assessed in response to decapitation and exogenous 6-BA treatment to further investigate the relationship between IAA and CTK on the lateral branch elongation of cucumber seedlings under FR light. Both decapitation and exogenous 6-BA treatment eliminated the inhibitory effect of FR light on the lateral branch elongation of cucumber seedlings. In conclusion, these results indicated that IAA and CTK were involved in the regulatory effects of FR light on cucumber seedling lateral branch elongation
The association between COX-2 polymorphisms and hematologic toxicity in patients with advanced non-small-cell lung cancer treated with platinum-based chemotherapy.
BACKGROUND AND OBJECTIVE: Overexpression of COX-2 is proved to contribute to tumor promotion and carcinogenesis through stimulating cell proliferation, inhibiting apoptosis and enhancing the invasiveness of cancer cells. Apoptosis-related molecules are potential predictive markers for survival and toxicity in platinum treatment. This study aimed at investigating the association between COX-2 polymorphisms and the occurrence of grade 3 or 4 toxicity in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. MATERIALS AND METHODS: Two hundred and twelve patients with inoperable stage IIIB-IV NSCLC received first-line chemotherapy between 2007 and 2009 were recruited in this study. Four functional COX-2 polymorphisms were genotyped by PCR-based restriction fragment length polymorphism (RFLP) methods. RESULTS: The incidence of grade 3 or 4 hematologic toxicity was significantly higher in G allele carriers of the COX-2 rs689466 (-1195G/A) polymorphism compared with wild-type homozygotes AA (P value = 0.008; odds ratio, 2.47; 95% confidence internal, 1.26-4.84) and the significance still existed after the Bonferroni correction. Statistically significant difference was also found in grade 3 or 4 leukopenia (P value = 0.010; OR = 2.82; 95%CI = 1.28-6.20). No other significant association was observed between genotype and toxicity in the study. The haplotype analysis showed that the haplotype AGG was associated with a reduced risk of grade 3 or 4 hematologic and leukopenia toxicity (P value = 0.009; OR = 0.59; 95%CI = 0.39-0.88 and P value = 0.025; OR = 0.61; 95%CI = 0.39-0.94, respectively) while the haplotype GGG was associated with an increased risk of grade 3 or 4 hematologic and leukopenia toxicity (P value = 0.009; OR = 1.71; 95%CI = 1.14-2.56 and P value = 0.025; OR = 1.65; 95%CI  = 1.06-2.57, respectively). CONCLUSION: This investigation for the first time suggested that polymorphism in COX-2 rs689466 may be a potent bio-marker in predicting severe hematologic toxicity in NSCLC patients after platinum-based chemotherapy
- …