329 research outputs found

    Aclimatación al frío en diferentes clones de Eucalyptus globulus Labill durante el régimen natural de endurecimiento

    Get PDF
    En la región mediterránea la principal limitación de la expansión del las plantaciones de Eucalyptus es la ocurrencia periódica de temperaturas bajas durante los meses de invierno (-5 a -10 oC). Por esta razón es crucial implementar un programa para mejorar la resistencia al frío en las especies utilizadas de este género. E. globulus, la especie más extendida en la península ibérica es considerada una especie moderadamente susceptible al frío. Se testaron 16 clones a los cuales se les realizó un seguimiento durante el régimen natural de endurecimiento y la salida del mismo para el periodo 2005-2006. La tolerancia al frío fue evaluada en tejido foliar desarrollado, tanto en hojas pecioladas maduras como en hojas sentadas juveniles, simulando condiciones de helada en ambiente controlado. De esta forma se demostró que existe un proceso de aclimatación de las plantas a las bajas temperaturas a medida que se acumulan las horas de frío y una desaclimatación de las mismas a medida que acaba el invierno. En todos los clones se determinó un máximo de tolerancia para la segunda quincena de enero, lo que corresponde con un total acumulado de 415 horas de frío por debajo de los 7 oC (HF7). Por otra parte se observó un cambio significativo en el umbral de temperaturas que causan un daño al 50% de la superficie del tejido foliar (TL50), siendo el valor medio de éstas -4,5 ºC antes de comenzar la temporada de frío y de – 6,5 ºC una vez alcanzado el máximo de endurecimiento.______________________________The greatest constraint on the expansion of Eucalyptus plantations in the Mediterranean region is the periodic occurrence of low temperatures (–5 to –10 oC) during winter. This has raised the need to launch a programme aimed at increasing the tolerance to cold weather of Eucalyptus species in the region. Eucalyptus globulus, which is the most widespread Eucalyptus species in the Iberian peninsula, is moderately vulnerable to cold. In this work, a total of 16 clones of this species were monitored during their natural hardening regime and at its end over the period 2005–06. Tolerance to cold was evaluated in well-developed tissue of both mature petiolate leaves and seated young leaves by mimicking freezing conditions in a controlled environment. The plants were found to gradually acclimate to low temperatures as the number of cold hours increased and to de-acclimate as the winter neared its end. Tolerance in all clones peaked in the second half of January, after an overall 415 could hours at temperatures below 7 oC (HF7). Also, the temperature threshold below which at least 50% of leaf surface tissue was damaged (TL50) varied markedly, from an average –4.5 oC at the beginning of the cold season to an average –6.5 oC at the point of maximum hardening

    Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites

    Full text link
    We report isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Identified grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This work greatly increases the presolar hibonite database, and is the first report of presolar Ti oxide. O-isotopic compositions of the grains span previously observed ranges and indicate an origin in red giant and asymptotic giant branch (AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in the parent AGB stars is required to explain isotopic compositions of many grains. Potassium-41 enrichments in hibonite grains are attributable to in situ decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good agreement with model predictions for low-mass AGB star envelopes, provided that ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of the hibonite grains reflect primarily the initial compositions of the parent stars and are generally consistent with expectations for Galactic chemical evolution, but require some local interstellar chemical inhomogeneity. Very high 17O/16O or 25Mg/24Mg ratios suggest an origin for some grains in binary star systems where mass transfer from an evolved companion has altered the parent star compositions. A supernova origin for the hitherto enigmatic 18O-rich Group 4 grains is strongly supported by multi-element isotopic data for two grains. The Group 4 data are consistent with an origin in a single supernova in which variable amounts of material from the deep 16O-rich interior mixed with a unique end-member mixture of the outer layers. The Ti oxide grains primarily formed in low-mass AGB stars. They are smaller and rarer than presolar Al2O3, reflecting the lower abundance of Ti than Al in AGB envelopes.Comment: Accepted for publication in ApJ; 47 pages, 13 figure

    Galactic chemical evolution of heavy elements: from Barium to Europium

    Get PDF
    We follow the chemical evolution of the Galaxy for elements from Ba to Eu, using an evolutionary model suitable to reproduce a large set of Galactic (local and non local) and extragalactic constraints. Input stellar yields for neutron-rich nuclei have been separated into their s-process and r-process components. The production of s-process elements in thermally pulsing asymptotic giant branch stars of low mass proceeds from the combined operation of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases neutrons in radiative conditions during the interpulse phase, and the reaction 22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The resulting s-process distribution is strongly dependent on the stellar metallicity. For the standard model discussed in this paper, it shows a sharp production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process yields, we assume that the production of r-nuclei is a primary process occurring in stars near the lowest mass limit for Type II supernova progenitors. The r-contribution to each nucleus is computed as the difference between its solar abundance and its s-contribution given by the Galactic chemical evolution model at the epoch of the solar system formation. We compare our results with spectroscopic abundances of elements from Ba to Eu at various metallicities (mainly from F and G stars) showing that the observed trends can be understood in the light of the present knowledge of neutron capture nucleosynthesis. Finally, we discuss a number of emerging features that deserve further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap

    Ectopic expression of GmNHX3 and GmNHX1, encoding two Glycine max Na+/H+ vacuolar antiporters, improves water deficit tolerance in Arabidopsis thaliana

    Get PDF
    The importance of Na+/H+ antiporters in salt tolerance in plants has been demonstrated in many studies, but much less is known about their protective role during drought stress. To study their possible contribution to water deficit tolerance, two closely related soybean Na+/H+ antiporters belonging to the intracellular NHX exchanger protein family, GmNHX3 and GmNHX1, were evaluated in transgenic Arabidopsis thaliana. A. thaliana plants ectopically expressing GmNHX3 or GmNHX1 displayed a more drought-tolerant phenotype compared to wild-type plants, which was accompanied by an increase in relative water content and chlorophyll content during stress conditions. Both GmHNX1 and GmHNX3 transgenic lines accumulated higher amounts of Na+ and K+ cations, showed increased antioxidant enzyme activities and less membrane damage due to lipid peroxidation under water deficit, as compared to non-transformed plants. Furthermore, plants expressing GmNHX3 showed an increased sensitivity to abscisic acid as deduced from stomatal closure and seed germination inhibition studies. Finally, a significant up-regulation of abiotic stress-related genes was observed in both transgenic lines compared to wild-type plants in response to abscisic acid and mannitol treatments. These results demonstrate that GmNHX3 and GmNHX1 antiporters confer protection during drought stress in A. thaliana and hence are potential genetic targets to improve drought tolerance in soybean and other crops.Fil: Pardo, Esteban Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Toum, Laila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Pérez Borroto, Lucía Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Fleitas, L.. Universidad de la República; UruguayFil: Gallino, J. P.. Universidad de la República; UruguayFil: Machi, S.. Universidad de la República; UruguayFil: Vojnov, Adrián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Welin, Björn. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; Argentin

    s-Process Nucleosynthesis in Carbon Stars

    Get PDF
    We present the first detailed and homogeneous analysis of the s-element content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are derived using the spectral synthesis technique from high-resolution spectra. The N-stars analyzed are of nearly solar metallicity and show moderate s-element enhancements, similar to those found in S stars, but smaller than those found in the only previous similar study (Utsumi 1985), and also smaller than those found in supergiant post-AGB stars. This is in agreement with the present understanding of the envelope s-element enrichment in giant stars, which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the AGB phase. We compare the observational data with recent ss-process nucleosynthesis models for different metallicities and stellar masses. Good agreement is obtained between low mass AGB star models (M < 3 M_o) and s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction is the main source of neutrons for the s-process; a moderate spread, however, must exist in the abundance of 13C that is burnt in different stars. By combining information deriving from the detection of Tc, the infrared colours and the theoretical relations between stellar mass, metallicity and the final C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this work are intrinsic, thermally-pulsing AGB stars; their abundances are the consequence of the operation of third dredge-up and are not to be ascribed to mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap

    The s Process: Nuclear Physics, Stellar Models, Observations

    Full text link
    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte

    Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation

    Full text link
    The endothelium holds a pivotal role in cardiovascular health and disease. Assessment of its function was until recently limited to experimental designs due to its location. The advent of novel techniques has facilitated testing on a more detailed basis, with focus on distinct pathways. This review presents available in-vivo and ex-vivo methods for evaluating endothelial function with special focus on more recent ones. The diagnostic modalities covered include assessment of epicardial and microvascular coronary endothelial function, local vasodilation by venous occlusion plethysmography and flow-mediated dilatation, arterial pulse wave analysis and pulse amplitude tonometry, microvascular blood flow by laser Doppler flowmetry, biochemical markers and bioassays, measurement of endothelial-derived microparticles and progenitor cells, and glycocalyx measurements. Insights and practical information on the theoretical basis, methodological aspects, and clinical application in various disease states are discussed. The ability of these methods to detect endothelial dysfunction before overt cardiovascular disease manifests make them attractive clinical tools for prevention and rehabilitation

    On the asymptotic giant branch star origin of peculiar spinel grain OC2

    Get PDF
    Microscopic presolar grains extracted from primitive meteorites have extremely anomalous isotopic compositions revealing the stellar origin of these grains. The composition of presolar spinel grain OC2 is different from that of all other presolar spinel grains. Large excesses of the heavy Mg isotopes are present and thus an origin from an intermediate-mass (IM) asymptotic giant branch (AGB) star was previously proposed for this grain. We discuss the isotopic compositions of presolar spinel grain OC2 and compare them to theoretical predictions. We show that the isotopic composition of O, Mg and Al in OC2 could be the signature of an AGB star of IM and metallicity close to solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and low metallicity suffering very efficient cool bottom processing. Large measurement uncertainty in the Fe isotopic composition prevents us from discriminating which model better represents the parent star of OC2. However, the Cr isotopic composition of the grain favors an origin in an IM-AGB star of metallicity close to solar. Our IM-AGB models produce a self-consistent solution to match the composition of OC2 within the uncertainties related to reaction rates. Within this solution we predict that the 16O(p,g)17F and the 17O(p,a)14N reaction rates should be close to their lower and upper limits, respectively. By finding more grains like OC2 and by precisely measuring their Fe and Cr isotopic compositions, it may be possible in the future to derive constraints on massive AGB models from the study of presolar grains.Comment: 10 pages, 8 figures, accepted for publication on Astronomy & Astrophysic

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    s-Process Nucleosynthesis in AGB Stars: A Test for Stellar Evolution

    Get PDF
    [abridged] We study the s-process in AGB stars using three different stellar evolutionary models computed for a 3Msun and solar metallicity star. First we investigate the formation and the efficiency of the main neutron source. We parametrically vary the number of protons mixed from the envelope into the C12 rich core. For p/C12 > 0.3, mainly N14 is produced, which represent a major neutron poison. The amount of C12 in the He intershell and the maximum value of the time-integrated neutron flux are proportional. Then we generate detailed s-process calculations on the basis of stellar evolutionary models constructed with three different codes. One code considers convective hydrodynamic overshoot that depends on a free parameter f, and results in partial mixing beyond convective boundaries, the most efficient third dredge up and the formation of the C13 pocket. For the other two codes an identical C13 pocket is introduced in the post-processing nucleosynthesis calculations. The models generally reproduce the spectroscopically observed s-process enhancements. The results of the cases without overshoot are remarkably similar. The code including hydrodynamic overshoot produces a He intershell composition near to that observed in H-deficient central stars of planetary nebulae. As a result of this intershell dredge up the neutron fluxes have a higher efficiency, both during the interpulse periods and within thermal pulses. The s-element distribution is pushed toward the heavier s-process elements and large abundances of neutron-rich isotopes fed by branching points in the s-process path are produced. Several observational constraints are better matched by the models without overshoot. Our study need to be extended to different masses and metallicities and in the space of the free overshoot parameter f.Comment: 44 pages, incl 10 figures, accepted for publication in Ap
    corecore