Microscopic presolar grains extracted from primitive meteorites have
extremely anomalous isotopic compositions revealing the stellar origin of these
grains. The composition of presolar spinel grain OC2 is different from that of
all other presolar spinel grains. Large excesses of the heavy Mg isotopes are
present and thus an origin from an intermediate-mass (IM) asymptotic giant
branch (AGB) star was previously proposed for this grain. We discuss the
isotopic compositions of presolar spinel grain OC2 and compare them to
theoretical predictions. We show that the isotopic composition of O, Mg and Al
in OC2 could be the signature of an AGB star of IM and metallicity close to
solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and
low metallicity suffering very efficient cool bottom processing. Large
measurement uncertainty in the Fe isotopic composition prevents us from
discriminating which model better represents the parent star of OC2. However,
the Cr isotopic composition of the grain favors an origin in an IM-AGB star of
metallicity close to solar. Our IM-AGB models produce a self-consistent
solution to match the composition of OC2 within the uncertainties related to
reaction rates. Within this solution we predict that the 16O(p,g)17F and the
17O(p,a)14N reaction rates should be close to their lower and upper limits,
respectively. By finding more grains like OC2 and by precisely measuring their
Fe and Cr isotopic compositions, it may be possible in the future to derive
constraints on massive AGB models from the study of presolar grains.Comment: 10 pages, 8 figures, accepted for publication on Astronomy &
Astrophysic