170 research outputs found

    Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T

    Get PDF
    Purpose: The goal of the present study was to use a three- dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors – with the additional advantage of a minimal disturbance of the water signal used for the host sequence. Methods: A 3D FatNav was inserted into two structural proto- cols: an inversion-prepared gradient echo at 0.33 0.33 1.00 mm resolution and a turbo spin echo at 600 mm isotropic resolution. Results: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. Conclusion: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence

    Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T

    Get PDF
    The ventro-intermediate nucleus (Vim), as part of the motor thalamic nuclei, is a commonly used target in functional stereotactic neurosurgery for treatment of drug-resistant tremor. As it cannot be directly visualized on routinely used magnetic resonance imaging (MRI), its clinical targeting is performed using indirect methods. Recent literature suggests that the Vim can be directly visualized on susceptibility-weighted imaging (SWI) acquired at 7T. Our work aims to assess the distinguishable Vim on 7T SWI in both healthy-population and patients and, using it as a reference, to compare it with: (1) The clinical targeting, (2) The automated parcellation of thalamic subparts based on 3T diffusion MRI (dMRI), and (3) The multi-atlas segmentation techniques. In 95.2% of the data, the manual outline was adjacent to the inferior lateral border of the dMRI-based motor-nuclei group, while in 77.8% of the involved cases, its ventral part enclosed the Guiot points. Moreover, the late MRI signature in the patients was always observed in the anterior part of the manual delineation and it overlapped with the multi-atlas outline. Overall, our study provides new insight on Vim discrimination through MRI and imply novel strategies for its automated segmentation, thereby opening new perspectives for standardizing the clinical targeting

    The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

    Get PDF
    The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the “multi-contrast individual-hemisphere” method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the “multi-contrast individual-hemisphere” approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses

    Dynamic T cell migration program provides resident memory within intestinal epithelium

    Get PDF
    Migration to intestinal mucosa putatively depends on local activation because gastrointestinal lymphoid tissue induces expression of intestinal homing molecules, whereas skin-draining lymph nodes do not. This paradigm is difficult to reconcile with reports of intestinal T cell responses after alternative routes of immunization. We reconcile this discrepancy by demonstrating that activation within spleen results in intermediate induction of homing potential to the intestinal mucosa. We further demonstrate that memory T cells within small intestine epithelium do not routinely recirculate with memory T cells in other tissues, and we provide evidence that homing is similarly dynamic in humans after subcutaneous live yellow fever vaccine immunization. These data explain why systemic immunization routes induce local cell-mediated immunity within the intestine and indicate that this tissue must be seeded with memory T cell precursors shortly after activation

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ)

    Get PDF
    Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18-85 years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing. (C) 2011 Elsevier Inc. All rights reserved

    Disease characteristics of MCT8 deficiency : an international, retrospective, multicentre cohort study

    Get PDF
    Background Disordered thyroid hormone transport, due to mutations in the SLC16A2 gene encoding monocarboxylate transporter 8 (MCT8), is characterised by intellectual and motor disability resulting from cerebral hypothyroidism and chronic peripheral thyrotoxicosis. We sought to systematically assess the phenotypic characteristics and natural history of patients with MCT8 deficiency. Methods We did an international, multicentre, cohort study, analysing retrospective data from Jan 1, 2003, to Dec 31, 2019, from patients with MCT8 deficiency followed up in 47 hospitals in 22 countries globally. The key inclusion criterion was genetically confirmed MCT8 deficiency. There were no exclusion criteria. Our primary objective was to analyse the overall survival of patients with MCT8 deficiency and document causes of death. We also compared survival between patients who did or did not attain full head control by age 1·5 years and between patients who were or were not underweight by age 1–3 years (defined as a bodyweight-for-age Z score <–2 SDs or <5th percentile according to WHO definition). Other objectives were to assess neurocognitive function and outcomes, and clinical parameters including anthropometric characteristics, biochemical markers, and neuroimaging findings. Findings Between Oct 14, 2014, and Jan 17, 2020, we enrolled 151 patients with 73 different MCT8 (SLC16A2) mutations. Median age at diagnosis was 24·0 months (IQR 12·0-60·0, range 0·0-744·0). 32 (21%) of 151 patients died; the main causes of mortality in these patients were pulmonary infection (six [19%]) and sudden death (six [19%]). Median overall survival was 35·0 years (95% CI 8·3–61·7). Individuals who did not attain head control by age 1·5 years had an increased risk of death compared with patients who did attain head control (hazard ratio [HR] 3·46, 95% CI 1·76–8·34; log-rank test p=0·0041). Patients who were underweight during age 1–3 years had an increased risk for death compared with patients who were of normal bodyweight at this age (HR 4·71, 95% CI 1·26–17·58, p=0·021). The few motor and cognitive abilities of patients did not improve with age, as evidenced by the absence of significant correlations between biological age and scores on the Gross Motor Function Measure-88 and Bayley Scales of Infant Development III. Tri-iodothyronine concentrations were above the age-specific upper limit in 96 (95%) of 101 patients and free thyroxine concentrations were below the age-specific lower limit in 94 (89%) of 106 patients. 59 (71%) of 83 patients were underweight. 25 (53%) of 47 patients had elevated systolic blood pressure above the 90th percentile, 34 (76%) of 45 patients had premature atrial contractions, and 20 (31%) of 64 had resting tachycardia. The most consistent MRI finding was a global delay in myelination, which occurred in 13 (100%) of 13 patients. Interpretation Our description of characteristics of MCT8 deficiency in a large patient cohort reveals poor survival with a high prevalence of treatable underlying risk factors, and provides knowledge that might inform clinical management and future evaluation of therapies

    A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection

    Get PDF
    International audienceAbstractSexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4+/CD8+ double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in Göttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in Göttingen Minipigs, compared to the more acidic vaginal pH around 3.5–5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection
    corecore