206 research outputs found

    Exogenously added GPI-anchored tissue inhibitor of matrix metal loproteinase-1 (TIMP-1) displays enhanced and novel biological activities

    Get PDF
    The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GP1 was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression

    Efficient NFV-Enabled Multicasting in SDNs

    Get PDF
    IEEE Multicasting is a fundamental functionality of many network applications, including online conferencing, event monitoring, video streaming, and so on. To ensure reliable, secure and scalable multicasting, a service chain that consists of network functions (e.g., firewalls, Intrusion Detection Systems (IDSs), and transcoders) usually is associated with each multicast request. We refer to such a multicast request with service chain requirement as an NFV-enabled multicast request. In this paper, we study NFV-enabled multicasting in a Software- Defined Network (SDN) with an aim to maximize network throughput while minimizing the implementation cost of admitted NFV-enabled multicast requests, subject to network resource capacity, where the implementation cost of a request consists of its computing resource consumption cost in servers and its network bandwidth consumption cost when routing and processing its data packets in the network. To this end, we first formulate two NFV-enabled multicasting problems with and without resource capacity constraints and one online NFV-enabled multicasting problem.We then devise two approximation algorithms with an approximation ratio of 2M for the NFV-enabled multicasting problems with and without resource capacity constraints, if the number of servers for implementing the service chain of each request is no greater than a constant M (≥1). We also study dynamic admissions of NFV-enabled multicast requests without the knowledge of future request arrivals with the objective to maximize the network throughput, for which we propose an efficient heuristic, and for a special case of dynamic request admissions, we devise an online algorithm with a competitive ratio of O(log n) for it when M = 1, where n is the number of nodes in the network. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising and outperform existing heuristics

    PGC-1α Inhibits Oleic Acid Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells

    Get PDF
    BACKGROUND: Oleic acid (OA) stimulates vascular smooth muscle cell (VSMC) proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC-1alpha) on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA) treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis

    Callous-unemotional traits moderate the relation between prenatal testosterone (2D:4D) and externalising behaviours in children

    Get PDF
    Children who exhibit callous-unemotional (CU) traits are identified as developing particularly severe forms of externalising behaviours (EB). A number of risk factors have been identified in the development of CU traits, including biological, physiological, and genetic factors. However, prenatal testosterone (PT) remains un-investigated, yet could signal fetal programming of a combination of CU/EB. Using the 2D:4D digit ratio, the current study examined whether CU traits moderated the relationship between PT and EB. Hand scans were obtained from 79 children aged between 5 and 6 years old whose parents completed the parent report ICU (Inventory of Callous Unemotional Traits) and SDQ (Strengths and Difficulties Questionnaire). CU traits were found to moderate the relationship between PT and EB so that children who were exposed to increased PT and were higher in CU traits exhibited more EB. Findings emphasize the importance of recognising that vulnerability for EB that is accompanied by callousness may arise before birth

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore