207 research outputs found
Critical dynamics of an isothermal compressible non-ideal fluid
A pure fluid at its critical point shows a dramatic slow-down in its
dynamics, due to a divergence of the order-parameter susceptibility and the
coefficient of heat transport. Under isothermal conditions, however, sound
waves provide the only possible relaxation mechanism for order-parameter
fluctuations. Here we study the critical dynamics of an isothermal,
compressible non-ideal fluid via scaling arguments and computer simulations of
the corresponding fluctuating hydrodynamics equations. We show that, below a
critical dimension of 4, the order-parameter dynamics of an isothermal fluid
effectively reduces to "model A," characterized by overdamped sound waves and a
divergent bulk viscosity. In contrast, the shear viscosity remains finite above
two dimensions. Possible applications of the model are discussed.Comment: 19 pages, 7 figures; v3: minor corrections and clarifications; as
published in Phys. Rev.
Kinetics of proinflammatory cytokines after intraperitoneal injection of tribromoethanol and a tribromoethanol/xylazine combination in ICR mice
Tribromoethanol (2,2,2-tribromoethanol, TBE) is a popular injectable anesthetic agent used in mice in Korea. Our goal was to assess the risks associated with side effects (lesions) in the abdominal cavity, especially at high doses. To understand the underlying pathophysiological changes, we examined levels of cytokines through ELISA of abdominal lavage fluid and spleen collected from mice treated with low and high-dose TBE. ICR mice were anesthetized using one of the following protocols: a combination of TBE 200 mg/kg (1.25%) and xylazine 10 mg/kg; TBE 400 mg/kg (1.25%); and TBE 400 mg/kg (2.5%). Administration of high-dose TBE (400 mg/kg) increased the interleukin-1β and interleukin-6 levels in the peritoneal cavity over the short term (<1 day) compared with sham controls and low-dose TBE (200 mg/kg) groups. Cytokine expression in the low-dose TBE group was similar to the control group, whereas in the high-dose TBE group cytokine levels were higher in abdominal lavage fluid and spleen over the long term (10 days post-injection). We conclude that a combination of TBE 200 mg/kg (1.25%) and xylazine (10 mg/kg) is a safe and effective anesthetic for use in animals
Classification of the nucleolytic ribozymes based upon catalytic mechanism
The nucleolytic ribozymes carry out site-specific RNA cleavage reactions by nucleophilic attack of the 2’-oxygen atom on the adjacent phosphorus with an acceleration of a million-fold or greater. A major part of this arises from concerted general acid-base catalysis. Recent identification of new ribozymes has expanded the group to a total of nine and this provides a new opportunity to identify sub-groupings according to the nature of the general base and acid. These include nucleobases, hydrated metal ions, and 2’-hydroxyl groups. Evolution has selected a number of different combinations of these elements that lead to efficient catalysis. These differences provide a new mechanistic basis for classifying these ribozymes
Quantum Transport in Semiconductor Nanostructures
I. Introduction (Preface, Nanostructures in Si Inversion Layers,
Nanostructures in GaAs-AlGaAs Heterostructures, Basic Properties).
II. Diffusive and Quasi-Ballistic Transport (Classical Size Effects, Weak
Localization, Conductance Fluctuations, Aharonov-Bohm Effect, Electron-Electron
Interactions, Quantum Size Effects, Periodic Potential).
III. Ballistic Transport (Conduction as a Transmission Problem, Quantum Point
Contacts, Coherent Electron Focusing, Collimation, Junction Scattering,
Tunneling).
IV. Adiabatic Transport (Edge Channels and the Quantum Hall Effect, Selective
Population and Detection of Edge Channels, Fractional Quantum Hall Effect,
Aharonov-Bohm Effect in Strong Magnetic Fields, Magnetically Induced Band
Structure).Comment: 111 pages including 109 figures; this review from 1991 has retained
much of its usefulness, but it was not yet available electronicall
Optimising experimental design for high-throughput phenotyping in mice: a case study
To further the functional annotation of the mammalian genome, the Sanger Mouse Genetics Programme aims to generate and characterise knockout mice in a high-throughput manner. Annually, approximately 200 lines of knockout mice will be characterised using a standardised battery of phenotyping tests covering key disease indications ranging from obesity to sensory acuity. From these findings secondary centres will select putative mutants of interest for more in-depth, confirmatory experiments. Optimising experimental design and data analysis is essential to maximise output using the resources with greatest efficiency, thereby attaining our biological objective of understanding the role of genes in normal development and disease. This study uses the example of the noninvasive blood pressure test to demonstrate how statistical investigation is important for generating meaningful, reliable results and assessing the design for the defined research objectives. The analysis adjusts for the multiple-testing problem by applying the false discovery rate, which controls the number of false calls within those highlighted as significant. A variance analysis finds that the variation between mice dominates this assay. These variance measures were used to examine the interplay between days, readings, and number of mice on power, the ability to detect change. If an experiment is underpowered, we cannot conclude whether failure to detect a biological difference arises from low power or lack of a distinct phenotype, hence the mice are subjected to testing without gain. Consequently, in confirmatory studies, a power analysis along with the 3Rs can provide justification to increase the number of mice used
Excretion of catecholamines in rats, mice and chicken
Stress assessment favours methods, which do not interfere with an animal’s endocrine status. To develop such non-invasive methods, detailed knowledge about the excretion of hormone metabolites in the faeces and urine is necessary. Our study was therefore designed to generate basic information about catecholamine excretion in rats, mice and chickens. After administration of 3H-epinephrine or 3H-norepinephrine to male and female rats, mice and chickens, all voided excreta were collected for 4 weeks, 3 weeks or for 10 days, respectively. Peak concentrations of radioactivity appeared in one of the first urinary samples of mice and rats and in the first droppings in chickens 0.2–7.2 h after injection. In rats, between 77.3 and 95.6% of the recovered catecholamine metabolites were found in the urine, while in mice, a mean of 76.3% were excreted in the urine. Peak concentrations in the faeces were found 7.4 h post injection in mice, and after about 16.4 h in rats (means). Our study provides valuable data about the route and the profile of catecholamine excretion in three frequently used species of laboratory animals. This represents the first step in the development of a reliable, non-invasive quantification of epinephrine and norepinephrine to monitor sympatho-adrenomedullary activity, although promising results for the development of a non-invasive method were found only for the chicken
Animal welfare in studies on murine tuberculosis : assessing progress over a 12-year period and the need for further improvement
There is growing concern over the welfare of animals used in research, in particular when these animals develop pathology. The present study aims to identify the main sources of animal distress and to assess the possible implementation of refinement measures in experimental infection research, using mouse models of tuberculosis (TB) as a case study. This choice is based on the historical relevance of mouse studies in understanding the disease and the present and long-standing impact of TB on a global scale. Literature published between 1997 and 2009 was analysed, focusing on the welfare impact on the animals used and the implementation of refinement measures to reduce this impact. In this 12-year period, we observed a rise in reports of ethical approval of experiments. The proportion of studies classified into the most severe category did however not change significantly over the studied period. Information on important research parameters, such as method for euthanasia or sex of the animals, were absent in a substantial number of papers. Overall, this study shows that progress has been made in the application of humane endpoints in TB research, but that a considerable potential for improvement remains.Nuno H. Franco is funded by Fundação para a Ciência e Tecnologia (SFRH/BD/38337/2007). This work is funded by FEDER funds through the Operational Competitiveness Programme - COMPETE and by national funds through FCT - Fundação para a Ciência e Tecnologia under the project FCOMP-01-0124-FEDER-022718 (PEst-C/SAU/LA0002/2011
- …