A pure fluid at its critical point shows a dramatic slow-down in its
dynamics, due to a divergence of the order-parameter susceptibility and the
coefficient of heat transport. Under isothermal conditions, however, sound
waves provide the only possible relaxation mechanism for order-parameter
fluctuations. Here we study the critical dynamics of an isothermal,
compressible non-ideal fluid via scaling arguments and computer simulations of
the corresponding fluctuating hydrodynamics equations. We show that, below a
critical dimension of 4, the order-parameter dynamics of an isothermal fluid
effectively reduces to "model A," characterized by overdamped sound waves and a
divergent bulk viscosity. In contrast, the shear viscosity remains finite above
two dimensions. Possible applications of the model are discussed.Comment: 19 pages, 7 figures; v3: minor corrections and clarifications; as
published in Phys. Rev.