58 research outputs found

    Saturable elimination of piperacillin in critically ill patients:implications for continuous infusion

    Get PDF
    The study aimed to evaluate saturation of piperacillin elimination in critically ill adult patients. Seventeen critically ill adult patients received continuous and intermittent infusion of piperacillin/tazobactam. Piperacillin plasma concentrations (n = 217) were analysed using population pharmacokinetic (PopPK) modelling. Post-hoc simulations were performed to evaluate the type I error rate associated with the study. Unseen data were used to validate the final model. The mean error (ME) and root mean square error (RMSE) were calculated as a measure of bias and imprecision, respectively. A PopPK model with parallel linear and non-linear elimination best fitted the data. The median and 95% confidence interval (CI) for the model parameters drug clearance (CL), volume of central compartment (V), volume of peripheral compartment (V-p) and intercompartmental clearance (Q) were 9 (7.69-11) L/h, 6.18 (4.93-11.2) L, 11.17 (7.26-12) L and 15.61 (12.66-23.8) L/h, respectively. The Michaelis-Menten constant (K-m) and the maximum elimination rate for Michaelis-Menten elimination (V-max) were estimated without population variability in the model to avoid overfitting and inflation of the type I error rate. The population estimates for K-m and V-max were 37.09 mg/L and 353.57 mg/h, respectively. The bias (ME) was -20.8 (95% CI -26.2 to -15.4) mg/L, whilst imprecision (RMSE) was 49.2 (95% CI 41.2-56) mg/L. In conclusion, piperacillin elimination is (partially) saturable. Moreover, the population estimate for K-m lies within the therapeutic window and therefore saturation of elimination should be accounted for when defining optimum dosing regimens for piperacillin in critically ill patients. (C) 2019 Elsevier B.V. and International Society of Chemotherapy. All rights reserved

    Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA.

    Get PDF
    PURPOSE: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. METHODS: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. RESULTS: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. CONCLUSION: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    Robust grasping under object pose uncertainty

    Get PDF
    This paper presents a decision-theoretic approach to problems that require accurate placement of a robot relative to an object of known shape, such as grasping for assembly or tool use. The decision process is applied to a robot hand with tactile sensors, to localize the object on a table and ultimately achieve a target placement by selecting among a parameterized set of grasping and information-gathering trajectories. The process is demonstrated in simulation and on a real robot. This work has been previously presented in Hsiao et al. (Workshop on Algorithmic Foundations of Robotics (WAFR), 2008; Robotics Science and Systems (RSS), 2010) and Hsiao (Relatively robust grasping, Ph.D. thesis, Massachusetts Institute of Technology, 2009).National Science Foundation (U.S.) (Grant 0712012

    Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA

    Get PDF
    Purpose: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. Methods: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Results: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0–1.00) and 85.9% (75.4–92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20–2.92) or receiving a written TLD (HR 2.32, CI 1.11–4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Conclusion: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    Get PDF
    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage
    • …
    corecore