578 research outputs found
Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients. results from the BACH Study (Biomarkers in ACute Heart Failure)
Objectives: The purpose of this study was to assess the impact of atrial fibrillation (AF) on the performance of mid-region amino terminal pro-atrial natriuretic peptide (MR-proANP) in comparison with the B-type peptides (BNP and NT-proBNP) for diagnosis of acute heart failure (HF) in dyspneic patients. Background: The effects of AF on the diagnostic and prognostic performance of MR-proANP in comparison with the B type natriuretic peptides have not been previously reported. Methods: A total of 1,445 patients attending the emergency department with acute dyspnea had measurements taken of MR-proANP, BNP, and NT-proBNP values on enrollment to the BACH trial and were grouped according to presence or absence of AF and HF. Results: AF was present in 242 patients. Plasma concentrations of all three peptides were lowest in those with neither AF nor HF and AF without HF was associated with markedly increased levels (p < 0.00001). HF with or without AF was associated with a significant further increment (p < 0.00001 for all three markers). Areas under receiver operator characteristic curves (AUCs) for discrimination of acute HF were similar and powerful for all peptides without AF (0.893 to 0.912; all p < 0.001) with substantial and similar reductions (0.701 to 0.757) in the presence of AF. All 3 peptides were independently prognostic but there was no interaction between any peptide and AF for prediction of all-cause mortality. Conclusions: AF is associated with increased plasma natriuretic peptide (MR-proANP, BNP and NT-proBNP) levels in the absence of HF. The diagnostic performance of all three peptides is impaired by AF. This warrants consideration of adjusted peptide thresholds for diagnostic use in AF and mandates the continued search for markers free of confounding by AF
Chemotactic response and adaptation dynamics in Escherichia coli
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia
coli is integral for detecting chemicals over a wide range of background
concentrations, ultimately allowing cells to swim towards sources of attractant
and away from repellents. Its biochemical mechanism based on methylation and
demethylation of chemoreceptors has long been known. Despite the importance of
adaptation for cell memory and behavior, the dynamics of adaptation are
difficult to reconcile with current models of precise adaptation. Here, we
follow time courses of signaling in response to concentration step changes of
attractant using in vivo fluorescence resonance energy transfer measurements.
Specifically, we use a condensed representation of adaptation time courses for
efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based
on the attractant flow in the experiment, signaling by cooperative receptor
complexes, and multiple layers of feedback regulation for adaptation. We
experimentally confirm the predicted effects of changing the enzyme-expression
level and bypassing the negative feedback for demethylation. Our data analysis
suggests significant imprecision in adaptation for large additions.
Furthermore, our model predicts highly regulated, ultrafast adaptation in
response to removal of attractant, which may be useful for fast reorientation
of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript
(19 pages, 5 figures) and supplementary information; added additional
clarification on alternative adaptation models in supplementary informatio
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Surgical resection for persistent seroma, following modified radical mastectomy
<p>Abstract</p> <p>Background</p> <p>Seroma formation following modified radical mastectomy with axillary lymph node dissection for breast cancer is a most common wound complication. In our experience seroma occurs in approximately 50% of patients undergoing mastectomy. Postmastectomy seromas usually vanishes within a few weeks after operation.</p> <p>Case presentation</p> <p>In this report we present the case of a 73 year old woman who had undergone mastectomy with axillary lymph node dissection for breast cancer, complicated by lymphorrhea and formation fibrous encapsulated seroma resistant to conservative treatment which required surgical resection.</p> <p>Conclusion</p> <p>We stand in opinion that in some cases of prolonged seromatous effusion with confirmed formation of thick walled reservoir the operation with resection and closure of supplying regional lymph vessels may be the best treatment, if possible preceded by arm lymphoscyntygraphy.</p
Mapping oral health related quality of life to generic health state values
BACKGROUND: A summary utility index is useful for deriving quality-adjusted life years (QALY) for cost analyses or disability weights for burden of disease studies. However, many quality of life instruments provide descriptive profiles rather than a single utility index. Transforming quality of life instruments to a utility index could extend the use of quality of life instruments to costs analyses and burden of disease studies. The aims of the study were to map a specific oral health measure, the Oral Health Impact Profile to a generic health state measure, the EuroQol, in order to enable the estimation of health state values based on OHIP data. METHODS: Data were collected from patients treated by a random sample of South Australian dentists in 2001–02 using mailed self-complete questionnaires. Dentists recorded the diagnosis of dental conditions and provided patients with self-complete questionnaires to record the nature, severity and duration of symptoms using the EuroQol (EQ-5D) and 14-item version of the Oral Health Impact Profile (OHIP-14) instruments. Data were available from 375 patients (response rate = 72%). A random two-thirds sample of patients was used in tobit regressions of EQ-5D health state values estimated using OHIP-14 in a model with categories of OHIP responses as indicator variables and in a model with OHIP responses as continuous variables. Age and sex were included as covariates in both models. The remaining one-third sample of patients was used to test the models. RESULTS: The OHIP item 'painful aching in mouth' was significantly related to health state values in both models while 'life less satisfying' was also significant in the continuous model. Mean forecast errors relative to the mean observed health state value were higher when fitted to the categorical model (17.4%) compared to the continuous model (15.2%) (P < 0.05). CONCLUSION: The findings enable health state values to be derived from OHIP-14 scores for populations where utility has not or cannot be measured directly
Inhibition of TGF-β Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats
Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease
PHANGS-JWST first results: stellar-feedback-driven excitation and dissociation of molecular gas in the Starburst Ring of NGC 1365?
We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C i] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas
- …
